【Swift】LeetCode 15. 三数之和

15. 三数之和

在这里插入图片描述

题目描述

请添加图片描述

思路 and Swift 题解

同样是经典的双指针问题。首先,我们需要对输入的数组排序,由于数组的类型是[Int],它遵循Sequence协议,因此直接使用内置的sorted()方法即可。

需要注意的是,在 Swift 当中,所有函数的参数默认都是常量,除非显式指定形参的类型为inout,所以此处我们修改形参名为anums,并使用var nums = anums.sorted()来获取排序后的数组。

为什么需要进行排序?因为我们需要在有序序列上使用双指针。首先,我们需要对排序后的数组进行遍历,由于我们求的是三数之和,理想情况下一个可能的答案是数组的最后三个数字,后两个数需要使用双指针来找到,因此遍历时,我们只需要遍历到nums.count - 3这个位置即可。此处需要引出一个 Swift for 循环当中的一个关键知识点,那就是如何对数组进行“范围遍历”。在 Swift 3.0+ 当中已经废弃了 C 风格的循环,也就是不能使用for (_; _; _) 来进行遍历,而应该使用for i in 0..<nums.count - 2进行遍历。

在 Swift 当中,a...b(三个点)标识了一个闭区间,如果使用a..<b(两个点,第三个点被<替代),那就是一个左闭右开区间(此处的 a 和 b 都是整型)。以1...3为例,使用var range = 1...3,得到的将是一个Range<Int>类型的变量,它不是数组,而是一个区间,但可以使用Array(range)Array(1..3)转为数组。除了在 for 循环当中作为循环边界之外,数组的切片当中也可以使用 Range。

现在回到这个问题上,我们对nums进行循环,每次取当前循环的数值nums[i]x。取jki + 1n - 1,在[i + 1, n - 1]这个范围内,我们需要寻找三个数值,满足x + nums[j] + nums[k] == 0。令sum = x + nums[j] + nums[k],如果sum > 0,说明右侧(数组已经升序排列了)的数值太大了,需要把右指针它向左调整以减小右侧的数值(k -= 1);反之如果sum < 0,则说明左侧的数值太小,左指针需要向右调整(j += 1)。如果sum == 0,说明此时找到了答案,记录[x, nums[j], nums[k]]到答案当中,并令j += 1; k -=1,继续寻找可能的答案(注意,可能会出现nums[j] == nums[j - 1]nums[k] == nums[k + 1],因此需要去重)。

完整的 Swift 题解如下,其中额外考虑了一些边界情况,一些是用作优化的,一些是用作找到答案后进行去重的:

class Solution {
    func threeSum(_ anums: [Int]) -> [[Int]] {
        var nums = anums.sorted()
        var n = nums.count
        var ans: [[Int]] = []
        for i in 0..<n - 2 {
            var x = nums[i]
            if i > 0 && x == nums[i - 1] {
                continue
            }
            if x + nums[n - 1] + nums[n - 2] < 0 {
                continue
            }
            if x + nums[i + 1] + nums[i + 2] > 0 {
                break
            }

            var j = i + 1, k = n - 1
            while j < k {
                var sum = x + nums[j] + nums[k]
                if sum > 0 {
                    k -= 1
                } else if sum < 0 {
                    j += 1
                } else {
                    ans.append([x, nums[j], nums[k]])
                    j += 1; k -= 1
                    while j < k && nums[j] == nums[j - 1] {
                        j += 1
                    }
                    while j < k && nums[k] == nums[k + 1] {
                        k -= 1
                    }
                }
            }
        }
        return ans
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值