文章目录
什么是 AI Infra?
最近在各大招聘软件上频繁看到有 AI Infra 的岗位发布,让我对这个名词非常的好奇。通过本篇文章总结我对这个名词进行调研的结果。
定义
AI Infra(人工智能基础设施)是为支持人工智能开发、训练、部署及规模化应用而构建的技术底层体系。它像一座“智能工厂”,整合硬件、软件、数据和工具,确保AI系统高效运行。
计算资源:AI 的“动力引擎”
- 硬件(Computational Resources):包括 GPU/TPU/NPU,提供强大的算力来支撑深度学习训练;
- 云计算与分布式系统:AWS、GCP等云平台提供弹性资源,结合Kubernetes实现集群调度,加速大规模训练;
- 边缘计算:在终端设备(如手机、摄像头)部署轻量模型,减少延迟,适用于实时推理场景。
框架与工具链:开发者的“工具箱”
- 深度学习框架:比如 Pytorch,支持自动微分与分布式训练。我所熟悉的
torch_lighting
框架就可以帮助我们自动实现模型的分布式训练; - 数据处理工具:Spark 处理海量数据、Label Studio 辅助数据标注(不过像 2023 年出现的视觉大模型 SAM 已经能够驱动 SAM 本身辅助训练数据的标注了)、Pandas 用于数据分析;
- 自动化工具:AutoML 自动化调参,提升开发效率。
数据平台:AI 的“燃料库”
- 数据流水线:ETL 工具整合数据,特征存储管理特征工程;
- 数据治理:确保数据质量、数据版本控制、数据合规性控制。
模型全生命周期管理:从实验室到生产
- 开发阶段:MLFlow 跟踪实验,DVC 管理数据与模型版本;
- 部署阶段:模型转换为服务(TorchServe)(MaaS,Model as a Service),通过 Docker 容器化,通过 Kubernetes 编排拓展;
- 监控与迭代:Prometheus 监控实时性能,持续训练应对数据漂移;
软硬件协同优化:极速推理的“秘密武器”
- 编译器优化:TVM、TensorRT 将模型编译为硬件特定指令,提升推理速度;
- 模型压缩技术:模型量化(INT8)、剪枝减少模型体积、适配边缘设备;
- 定制芯片:Google TPU、华为昇腾;
拓展组件与趋势
- 安全与合规:联邦学习保护隐私;
- 边缘 AI:TinyML 推动卫星设备运行轻量模型;
- 开源生态:Hugging Face 整合预训练模型;
总结
AI Infra 可以视为 AI 应用智能化落地的基石,可以持续推动技术边界的拓展。
总得来说,AI Infra 其实就是 AI 基础架构及其相关技术的整合,它是一个较为笼统的概念,其中包括模型分布式训练与集群管理、数据预处理与数据治理、模型开发、模型部署等多项内容。