【AI Infra】什么是 AI Infra?

什么是 AI Infra?

最近在各大招聘软件上频繁看到有 AI Infra 的岗位发布,让我对这个名词非常的好奇。通过本篇文章总结我对这个名词进行调研的结果。
在这里插入图片描述

定义

AI Infra(人工智能基础设施)是为支持人工智能开发、训练、部署及规模化应用而构建的技术底层体系。它像一座“智能工厂”,整合硬件、软件、数据和工具,确保AI系统高效运行。

计算资源:AI 的“动力引擎”

  • 硬件(Computational Resources):包括 GPU/TPU/NPU,提供强大的算力来支撑深度学习训练;
  • 云计算与分布式系统:AWS、GCP等云平台提供弹性资源,结合Kubernetes实现集群调度,加速大规模训练;
  • 边缘计算:在终端设备(如手机、摄像头)部署轻量模型,减少延迟,适用于实时推理场景。

框架与工具链:开发者的“工具箱”

  • 深度学习框架:比如 Pytorch,支持自动微分与分布式训练。我所熟悉的 torch_lighting 框架就可以帮助我们自动实现模型的分布式训练;
  • 数据处理工具:Spark 处理海量数据、Label Studio 辅助数据标注(不过像 2023 年出现的视觉大模型 SAM 已经能够驱动 SAM 本身辅助训练数据的标注了)、Pandas 用于数据分析;
  • 自动化工具:AutoML 自动化调参,提升开发效率。

数据平台:AI 的“燃料库”

  • 数据流水线:ETL 工具整合数据,特征存储管理特征工程;
  • 数据治理:确保数据质量、数据版本控制、数据合规性控制。

模型全生命周期管理:从实验室到生产

  • 开发阶段:MLFlow 跟踪实验,DVC 管理数据与模型版本;
  • 部署阶段:模型转换为服务(TorchServe)(MaaS,Model as a Service),通过 Docker 容器化,通过 Kubernetes 编排拓展;
  • 监控与迭代:Prometheus 监控实时性能,持续训练应对数据漂移;

软硬件协同优化:极速推理的“秘密武器”

  • 编译器优化:TVM、TensorRT 将模型编译为硬件特定指令,提升推理速度;
  • 模型压缩技术:模型量化(INT8)、剪枝减少模型体积、适配边缘设备;
  • 定制芯片:Google TPU、华为昇腾;

拓展组件与趋势

  • 安全与合规:联邦学习保护隐私;
  • 边缘 AI:TinyML 推动卫星设备运行轻量模型;
  • 开源生态:Hugging Face 整合预训练模型;

总结

AI Infra 可以视为 AI 应用智能化落地的基石,可以持续推动技术边界的拓展。

总得来说,AI Infra 其实就是 AI 基础架构及其相关技术的整合,它是一个较为笼统的概念,其中包括模型分布式训练与集群管理、数据预处理与数据治理、模型开发、模型部署等多项内容。

### AI 基础设施概念 AI基础设施是指支撑人工智能模型开发、训练以及部署所需的技术资源和服务集合。这不仅限于计算能力,还包括数据管理、存储、网络连接以及其他辅助工具。 #### 计算资源 对于高效的机器学习工作流而言,强大的计算力不可或缺。通常情况下,GPU(图形处理单元)、TPU(张量处理单元)等加速器被广泛应用于大规模矩阵运算中以提高效率[^2]。 #### 数据管理和预处理平台 有效的数据分析与准备是成功实施任何AI项目的基础。这类平台提供从原始数据收集到特征工程等一系列功能,确保输入给算法的数据质量良好并适合特定任务需求。 #### 存储解决方案 考虑到现代AI应用往往涉及海量级的数据集,在设计相应的存取架构时需兼顾性能与成本效益之间的平衡。分布式文件系统或对象存储成为主流选择之一,它们能够满足高并发读写操作的同时保持良好的扩展性。 #### 网络通信设施 稳定可靠的网络环境同样至关重要,尤其是在跨地域协作场景下。高速低延迟的传输链路有助于减少因等待时间造成的瓶颈效应;而边缘计算则通过将部分处理逻辑下沉至靠近终端设备的位置进一步优化整体响应速度[^1]。 ```python import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator # Example of setting up data pipeline using TensorFlow/Keras API datagen = ImageDataGenerator(rescale=1./255) train_generator = datagen.flow_from_directory( 'data/train', target_size=(150, 150), batch_size=32, class_mode='binary') ``` 上述代码片段展示了如何利用Keras库中的`ImageDataGenerator`类创建图像增强流水线,这是实现高效数据加载及前处理的一种常见方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值