欧几里得算法,扩展欧几里得算法及裴蜀定理证明

本文介绍了欧几里得算法及其证明,探讨裴蜀定理,并详细阐述了扩展欧几里得算法的原理与应用。通过实例解析算法的迭代过程,适合初学者理解。
摘要由CSDN通过智能技术生成

最近小腐了一下数论,巩固了一些NOIP考察的数论基本知识。


其实是这样的:

我拿着“当Gcd(p,q)=1时,最大无法表示成px+qy(x,y>=0)的数是pq-p-q”的问题去问教我们“培优班”“兴趣班”的高中数学老师,过了两周,她给我卖关子,写了下裴蜀定理,说:“这是大一的内容,你弄不懂,因为很复杂,许多知识没学过。”,我告诉她我证明过,但是裴蜀定理ax+by中的a,b只满足整数,不一定满足a,b>=0,她一脸懵逼,显然是没有注意到”(x,y>=0)”,接着我就开始和一位数学专业的瞎扯信息学。截至本博客发表前,未有答复。

在交流中我猛然意识到,很多证明虽然我看过、理解过,但是到自己讲的时候就词穷了,于是我旷了晚修来上网找证明,要么高深莫测看不懂,要么跳步百出脑补晕,很难找到适合我这种初中生(蒟蒻)的浅显易懂的证明,我把好几种学过的知识联系起来,才算懂了个大概。

在这里总结一下,也是方便那些像我一样的蒟蒻学习。

欧几里得算法:

gcd(a,b)表示a,b的最大公约数。
a mod b 表示a 除以 b 所得的余数。

我们设a>=b, 那么算法就是 gcd(a,b)=gcd(b,a mod b)
当b=0时,gcd(a,b)=a。
为了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值