网络流二元关系

本文介绍了网络流模型在处理任务分配问题中的应用,通过最小割法解决不同任务产生的额外代价问题。内容包括最基础模型的解释,处理相同任务产生代价的改进方法,以及面对负代价时的求解策略。通过对负代价的转换和正负代价混合情况的处理,展示了网络流在解决这类问题的灵活性。
摘要由CSDN通过智能技术生成

最最最基本模型

有n个任务,可以选择A任务或者B任务,代价分别是a,b,还有一些三元组关系,[x,y,z]表示如果x任务和y任务选的任务不同,将会有一个额外的代价c,现在分配任务,使总代价最小。
这里写图片描述
按以上方式建图,跑最小割即是答案。

为什么呢?
其实这个图有个好性质,就是如果你已经割了两个不在一侧的边,那你必然要割中间的一条,这样的话,就可以用了。
题设是不同的任务会产生代价,那我们把不同的放在两侧就行了。

T1&T1’:

把模型改一下,改成相同会产生代价。
这里写图片描述
那就交换一下顺序,这样可以保证割了相同的时,中间的也会被割掉一个。
由于是a、b的连边是相反的,在建图之前我们需要染色。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值