【GDOI2018模拟8.11】质数

Description:

这里写图片描述
1<=n<=10^12

题解:

看到这种题就会想这是不是反演题。
如果它是一道反演题,那它必须要有gcd来,题目中没有gcd,所以能不能变换出gcd呢。
实际上 2f(x)=[gcd(i,j)=1][ij=x] ,即考虑每一个p^q是给i还是给j。
Ans=ni=1j|i[gcd(j,ij)=1]
=ni=1nij=1[gcd(i,j)=1]
=ni=1nij=1d|gcd(i,j)μ(d)
=ni=1d|iμ(d)nid
=nd=1μ(d)ndi=1nid2
观察式子,减去不必要的循环,缩小循环范围。
=nd=1μ(d)nd2i=1nid2

线筛出μ,外层暴力枚举d,μ(d) ≠ 0时再内层循环分块。

ni=1[μ(i)0]
=(n)i=1μ(i)ni2
根据打表可得:
0.607n(n>=106)

时间复杂度证明:
T=ni=1ni2
=ni=1ni
n  logn2

那么就是 O(0.607n  logn2)

Code:

#include<cstdio>
#define ll long long
#define fo(i, x, y) for(ll i = x; i <= y; i ++)
using namespace std;

const ll N = 1000000, mo = 998244353;

ll mu[N + 5], p[N], n, ans, s;
bool bz[N + 5];

int main() {
    mu[1] = 1;
    fo(i, 2, N) {
        if(!bz[i]) p[++ p[0]] = i, mu[i] = -1;
        fo(j, 1, p[0]) {
            ll k = i * p[j];
            if(k > N) break;
            bz[k] = 1;
            if(i % p[j] == 0) {
                mu[k] = 0;
                break;
            }
            mu[k] = -mu[i];
        }
    }
    scanf("%lld", &n);
    for(ll d = 1; d * d <= n; d ++) if(mu[d] != 0){
        ll m = n / (d * d);
        s = 0;
        fo(i, 1, m) {
            ll j = m / (m / i);
            s += (ll)(m / i) * (j - i + 1) % mo;
            i = j;
        }
        ans += s * mu[d];
    }
    printf("%lld", (ans % mo + mo) % mo);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值