【NOIP2013模拟联考12】数数(数位dp||类欧几里得)

Description:

ztxz16从小立志成为码农,因此一直对数的二进制表示很感兴趣。今天的数学课上,ztxz16学习了等差数列的相关知识。我们知道,一个等差数列可以用三个数A,B,N表示成如下形式:

B + A, B + 2 * A, B + 3 * A, …, B + N * A

ztxz16想知道对于一个给定的等差数列,把其中每一项用二进制表示后,一共有多少位是1,但他的智商太低无法算出此题,因此寻求你的帮助。

1<=T<=20 , 1<=A<=10000 , 1<=B<=10^16 , 1<=N<=10^12

题解:

直觉告诉我这是个数位dp。

注意到a很小。

最接近a的2的幂是2^14。

把每个数的前14位和后面的位分开看。

前14位因为最多只有2^14个数,所以可以强行找循环节求答案。

对于后面的位,因为每次相当于加1个1或不加,产生的数是连续的,且加和不加也是个循环节,因此数位dp,只需要记录每个数mo循环节中1的个数的值即可算出贡献。


LL说这是个傻逼dp:
大概是直接以%a的值作为一个状态,求出b->b+a*n中%a=b%a的所有数的1的个数就好了。

呵呵。


题解的和infleaking的做法一致:按位搞贡献。

依次统计每一位上有多少1,对于第K位显然有:B+A与B+(2 ^ k + 1)A相同,因此可以将原等差数列拆分为若干循环节统计
对于一个循环节内,可以将连续的一段0或者连续的一段1一起处理
这样复杂度为 O(2^K/((2^K)/A)) = O(A)

高中一众大佬考场上类欧结果溢出成60points,只有gjx过,出题人被1ms怒艹。

之后去把类欧补充了下。

为了方便,先考虑b,最后把b减掉就行了。

枚举每一位k,单独算贡献。

k
=ni=0ai+b2k mod 2
=ni=0ai+b2kai+b2k+12

这东西就是裸的类欧,后面的博客会详细介绍类欧的几种情况。

复杂度 O(Tlog alog 1016)

注意之前提到的溢出。

类欧中间有一个n*(n+1)/2*(a/c)的计算。

n这么大,肯定GG。

所以可以开unsigned long long,相当于对2^64取模,因为最后的答案肯定小于2^64,所以这个方法是没问题的。

遇到n*(n+1)/2*(a/c)就判一下n是偶数还是奇数,先除以个2。

unsigned long long记得用%llu读入输出(cin,cout也没问题,突然想起了NOIP的痛~~)。


Code(类欧):

#include<cstdio>
#define ul unsigned long long
#define fo(i, x, y) for(int i = x; i <= y; i ++)
using namespace std;

ul T, a, b, n, ans, a2[65];

ul f(ul a, ul b, ul c, ul n) {
    ul s = (n + 1) * (b / c);
    if(n % 2 == 0) s += n / 2 * (n + 1) * (a / c); else s += (n + 1) / 2 * n * (a / c);
    a %= c; b %= c;
    ul m = (a * n + b) / c;
    if(m == 0) return s;
    return s + n * m - f(c, c - b - 1, a, m - 1);
}

int main() {
    a2[0] = 1; fo(i, 1, 62) a2[i] = a2[i - 1] * 2;
    for(scanf("%llu", &T); T; T --) {
        scanf("%llu %llu %llu", &a, &b, &n);
        ans = 0;
        fo(k, 0, 60) if(b & a2[k]) ans --;
        fo(k, 0, 60) ans += f(a, b, a2[k], n) - f(a, b, a2[k + 1], n) * 2;
        printf("%llu\n", ans);
    }
}

Code(分块+数位dp):

#include<cstdio>
#include<cstring>
#define ll long long
#define fo(i, x, y) for(ll i = x; i <= y; i ++)
#define fd(i, x, y) for(ll i = x; i >= y; i --)
#define low(x) ((x) & -(x))
using namespace std;

ll T; ll st, ca, n, ans;

const ll M = 1 << 14;

ll a2[65];

ll bz[M + 5], d[M + 5], jin[M + 5];

ll sum(ll x) {
    ll s = 0;   
    while(x) s ++, x -= low(x);
    return s;
}

void Find_xun() {
    memset(bz, 0, sizeof bz);
    d[0] = 0;
    ll x = st % M + ca;
    while(!bz[x % M]) {
        d[0] ++;
        jin[d[0]] = x / M; x %= M;
        bz[x] = 1; d[d[0]] = x;
        x += ca;
    }
}

void Tong_xiao() {
    fo(i, 1, d[0]) ans += sum(d[i]) * (n / d[0] + (n % d[0] >= i));
}

ll b[M + 5];

ll f[65][M + 5][2], f1[65][M + 5][2], g[M + 5], g2[M + 5];

void dp(ll n, ll m) {
    ll a[65]; a[0] = 0;
    while(n) a[++ a[0]] = n & 1, n >>= 1;
    memset(g, 0, sizeof g);
    if(a[0] == 0) return;
    memset(f, 0, sizeof f); memset(f1, 0, sizeof f1);
    f[a[0] + 1][0][1] = 1;
    fd(i, a[0], 1) {
        fo(j, 0, m - 1) {
            fo(k, 0, 1) if(f[i + 1][j][k]) {
                fo(p, 0, 1) {
                    if(k && p > a[i]) continue;
                    ll nj = (j + a2[i - 1] * p) % m;
                    ll nk = k & (a[i] == p);
                    f[i][nj][nk] += f[i + 1][j][k];
                    f1[i][nj][nk] += f1[i + 1][j][k] + p * f[i + 1][j][k];
                }
            }
        }
    }
    fo(j, 0, m - 1) g[j] += f1[1][j][0] + f1[1][j][1];
}

void Tong_da() {
    if(n / d[0] < 2) {
        st /= M;
        fo(i, 1, n) {
            st += jin[(i - 1) % d[0] + 1];
            ans += sum(st);
        }
        return;
    }
    ll ci = n / d[0], fi = 0, num = 0;
    fo(i, 1, d[0]) num += jin[i];
    fo(i, 1, d[0]) if(jin[i]) {
        fi = i;
        break;
    }
    st /= M;
    dp(st, num);
    fo(i, 0, num - 1) g2[i] = g[i];
    dp(st + (ci - 1) * num, num);
    fo(i, 0, num - 1) g[i] -= g2[i];
    ans += sum(st) * (fi - 1);
    fo(i, fi, d[0])
        st += jin[i], ans += g[st % num];
    ans += g[st % num] * (fi - 1);
    n -= d[0] * (ci - 1) + (fi - 1);
    st += num * (ci - 2); ll nx = fi - 1;
    while(n) n --, nx = nx % d[0] + 1, st += jin[nx], ans += sum(st);
}

int main() {
    a2[0] = 1; fo(i, 1, 60) a2[i] = a2[i - 1] * 2;
    for(scanf("%lld", &T); T; T --) {
        scanf("%lld %lld %lld", &ca, &st, &n);
        Find_xun();
        ans = 0;
        Tong_xiao();
        Tong_da();
        printf("%lld\n", ans);
    }
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值