浅谈我对(扩展)Lucas定理的理解

可能是太太太久没有用这个定理了,考场上都不记得有这个东西,然后自己推了个组合数取模(模数是一个质数p,且p比较小),考后发现就是Lucas定理,可以说是顺推出了Lucas定理,而不是有了结论再去证明。


目标:
C n m ( m o d   p ) C_{n}^m(mod~p) Cnm(mod p),p是质数,且比较小。

step1:

考虑如何求 n ! ( m o d   p ) n!(mod~p) n!(mod p)

当然是把p的倍数先提出来,然后剩下的数 m o d   p mod~p mod p之后就是 1 , 2 , … , p − 1 1,2,…,p-1 1,2,,p1的周期。

n ! ( m o d   p ) n!(mod~p) n!(mod p)
= ( p − 1 ) ! n / p ∗ ( n   m o d   p ) ! ∗ p n / p ∗ ( n / p ) ! =(p-1)!^{n/p}*(n~mod~p)!*p^{n/p}*(n/p)! =(p1)!n/p(n mod p)!pn/p(n/p)!

step2:

C n m ( m o d   p ) C_{n}^m(mod~p) Cnm(mod p)
n ! m ! ∗ ( n − m ) ! {n!\over m!*(n-m)!} m!(nm)!n!

先考虑它含 p p p的幂次为0的条件是什么?
就是 ( n / p − m / p − ( n − m ) / p ) = 0 (n/p-m/p-(n-m)/p)=0 (n/pm/p(nm)/p)=0
那么其实就是 n   m o d   p > = m   m o d   p n~mod~p>=m~mod~p n mod p>=m mod p

因为 n / p = m / p + ( n − m ) / p n/p=m/p+(n-m)/p n/p=m/p+(nm)/p,所以刚才 n ! n! n!中的 ( p − 1 ) ! n / p (p-1)!^{n/p} (p1)!n/p这一项就被消掉了。

再代入得:
= [ n   m o d   p > = m   m o d   p ] ∗ ( n   m o d   p ) ! ( m   m o d   p ) ! ∗ ( ( n − m )   m o d   p ) ! ∗ ( n / p ) ! ( m / p ) ! ∗ ( ( n − m ) / p ) ! = [n~mod~p>=m~mod~p]* {(n~mod~p)!\over(m~mod~p)!*((n-m)~mod~p)!} *{(n/p)!\over(m/p)!*((n-m)/p)!} =[n mod p>=m mod p](m mod p)!((nm) mod p)!(n mod p)!(m/p)!((nm)/p)!(n/p)!

[ n   m o d   p > = m   m o d   p ] ∗ ( n   m o d   p ) ! ( m   m o d   p ) ! ∗ ( ( n − m )   m o d   p ) ! [n~mod~p>=m~mod~p]* {(n~mod~p)!\over(m~mod~p)!*((n-m)~mod~p)!} [n mod p>=m mod p](m mod p)!((nm) mod p)!(n mod p)! C n   m o d   p m   m o d   p C_{n~mod~p}^{m~mod~p} Cn mod pm mod p

[ n   m o d   p > = m   m o d   p ] ∗ ( n / p ) ! ( m / p ) ! ∗ ( ( n − m ) / p ) ! ⇔ C n / p m / p [n~mod~p>=m~mod~p]*{(n/p)!\over(m/p)!*((n-m)/p)!}⇔C_{n/p}^{m/p} [n mod p>=m mod p](m/p)!((nm)/p)!(n/p)!Cn/pm/p
整理得:
C n m = C n   m o d   p m   m o d   p ∗ C n / p m / p C_{n}^{m}=C_{n~mod~p}^{m~mod~p}*C_{n/p}^{m/p} Cnm=Cn mod pm mod pCn/pm/p


有了上面的思路扩展Lucas定理就是手到擒来的。

我想扩展Lucas并不用给出Lucas定理那样优美的式子,只要能看就行了。

首先对模数分解质因数,之后(ex)中国剩余定理合并回去就行了。

现在问题在于求 C n m   m o d   p k C_{n}^{m}~mod~p^k Cnm mod pk, p p p是一个质数。

n !   m o d   p k n!~mod~p^k n! mod pk
= ( ∏ i = 1 且 i   m o d   p > 0 p k ∗ i ) n / p k ∗ ( ∏ i = 1 且 i   m o d   p > 0 n   m o d   p k ∗ i ) ∗ ( n / p ) ! ∗ p n / p =(\prod_{i=1且i~mod~p>0}^{p^k}*i)^{n/{p^k}}*(\prod_{i=1且i~mod~p>0}^{n~mod~p^k}*i)*(n/p)!*p^{n/p} =(i=1i mod p>0pki)n/pk(i=1i mod p>0n mod pki)(n/p)!pn/p

( n / p ) ! (n/p)! (n/p)!可能产生新的 p p p的倍数,这个可以递归解决。

我们可以求出这样一个形式,即 n ! = p x ∗ y ( y ≠ 0 ) n!=p^{x}*y(y≠0) n!=pxy(y̸=0),然后:
C n m = n ! m ! ∗ ( n − m ) ! C_{n}^m={n! \over m!*(n-m)!} Cnm=m!(nm)!n!

这样 p p p的幂次用上面-下面算,然后y有逆元的,逆元的话可以用欧拉定理,如果写的是excrt,也可以直接用,这样就做完了。

洛谷模板题:
https://www.luogu.org/problemnew/show/P4720

Code:

#include<cstdio>
#define pp printf
#define ll long long
#define fo(i, x, y) for(ll i = x, B = y; i <= B; i ++)
using namespace std;

ll n, m, p;
ll mo;

ll gcd(ll x, ll y) {
	return !y ? x : gcd(y, x % y);
}
void eg(ll a, ll b, ll &x, ll &y) {
	if(!b) {x = a; y = 0; return;}
	eg(b, a % b, y, x); y -= a / b * x;
}
ll inv(ll u, ll v) {
	ll x, y; eg(u, -v, x, y);
	return (x % v + v) % v;;
}
ll ksm(ll x, ll y) {
	ll s = 1;
	for(; y; y /= 2, x = x * x % mo)
		if(y & 1) s = s * x % mo;
	return s;
}

struct crt {
	ll c, m;
	crt(ll _c = 0, ll _m = 0) {m = _m, c = _c;}
};

crt excrt(crt a, crt b) {
	ll t = gcd(a.m, b.m);
	ll m3 = b.m / t, M = m3 * a.m;
	crt c;
	c.c = ((ll) inv(a.m / t, m3) * ((b.c - a.c) / t) % m3 * a.m + a.c) % M;
	c.c < 0 ? c.c += M : 0;
	c.m = M; return c;
}

ll fc1(ll n, ll p) {
	return !n ? 0 : n / p + fc1(n / p, p);
}
ll fc2(ll n, ll p) {
	if(!n) return 1;
	ll s = 1;
	fo(i, 1, mo) if(i % p) s = s * i % mo;
	s = ksm(s, n / mo);
	fo(i, 1, n % mo) if(i % p) s = s * i % mo;
	return s * fc2(n / p, p) % mo;
}
ll C(ll n, ll m, ll p, ll k) {
	mo = 1; fo(i, 1, k) mo = mo * p;
	ll x = fc1(n, p) - fc1(m, p) - fc1(n - m, p);
	if(x >= k) return 0;
	ll y = fc2(n, p) * inv(fc2(m, p) * fc2(n - m, p) % mo, mo) % mo;
	return ksm(p, x) * y % mo;
}

crt a, b;

int main() {
	scanf("%lld %lld %lld", &n, &m, &p);
	a = crt(0, 1);
	fo(i, 2, p) if(p % i == 0) {
		ll u = i, v = 0, g = 1;
		while(p % i == 0) v ++, p /= i, g *= i;
		b = crt(C(n, m, u, v), g);
		a = excrt(a, b);
	}
	pp("%lld\n", a.c);
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值