[BZOJ2599][IOI2011]Race 树分治

题意


求树上权值和为K的最小简单路径


树分治

每次分治找到的Root,T[x]表示离Root距离为x的最小边数量,DFS时更新答案。

表示T数组开小竟然是TLE很不科学……

#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#define N 200010
#define M 1000010
#define inf 1<<30

using namespace std;

int n,k,G[N],cnt,root,mx[N],sz[N],V[N],tot,dis[N],d[N],Ans,t[M];
struct edge{
    int t,nx,w;
}E[N<<2];

inline char C(){
    return getchar();
    static char buf[100000],*p1=buf,*p2=buf;
    if(p1==p2){
        p2=(p1=buf)+fread(buf,1,100000,stdin);
        if(p1==p2)return EOF;
    }
    return *p1++;
}

inline void reaD(int &x){
    char Ch=C();x=0;
    for(;Ch>'9'||Ch<'0';Ch=C());
    for(;Ch>='0'&&Ch<='9';x=x*10+Ch-'0',Ch=C());
}

inline void InserT(int u,int v,int w){
    E[++cnt].t=v;E[cnt].nx=G[u];E[cnt].w=w;G[u]=cnt;
    E[++cnt].t=u;E[cnt].nx=G[v];E[cnt].w=w;G[v]=cnt;
}

inline int max(const int &a,const int &b){
    return a<b?b:a;
}

void GetRoot(int x,int f){
    sz[x]=1;mx[x]=0;
    for(int i=G[x];i;i=E[i].nx)
        if(E[i].t!=f&&!V[E[i].t]){
            GetRoot(E[i].t,x);
            sz[x]+=sz[E[i].t];
            mx[x]=max(mx[x],sz[E[i].t]);
        }
    mx[x]=max(mx[x],tot-sz[x]);
    if(mx[x]<mx[root]) root=x;
}

void calc(int x,int f){
    if(dis[x]<=k){Ans=min(Ans,d[x]+t[k-dis[x]]);}
    for(int i=G[x];i;i=E[i].nx)
        if(E[i].t!=f&&!V[E[i].t]){
            dis[E[i].t]=dis[x]+E[i].w;
            d[E[i].t]=d[x]+1;
            calc(E[i].t,x);
        }
}

void add(int x,int f){
    if(dis[x]<=k)t[dis[x]]=min(t[dis[x]],d[x]);
    for(int i=G[x];i;i=E[i].nx)
        if(E[i].t!=f&&!V[E[i].t]) add(E[i].t,x);
}

void desty(int x,int f){
    if(dis[x]<=k)t[dis[x]]=inf;
    for(int i=G[x];i;i=E[i].nx)
        if(E[i].t!=f&&!V[E[i].t]) desty(E[i].t,x);
}

void Solve(int x){
    V[x]=1;d[x]=0;t[0]=0;
    for(int i=G[x];i;i=E[i].nx)
        if(!V[E[i].t]){
            d[E[i].t]=d[x]+1;
            dis[E[i].t]=E[i].w;
            calc(E[i].t,x);
            add(E[i].t,x);
        }
    for(int i=G[x];i;i=E[i].nx)
        if(!V[E[i].t]) desty(E[i].t,x);
    for(int i=G[x];i;i=E[i].nx)
        if(!V[E[i].t]){
            root=0;tot=sz[E[i].t];
            GetRoot(E[i].t,0);
            Solve(root);
        }
}

int main(){
    #ifndef ONLINE_JUDGE
    freopen("1.in","r",stdin);
    freopen("1.out","w",stdout);
    #endif
    reaD(n);reaD(k);
    for(int i=1,u,v,w;i<n;i++)reaD(u),reaD(v),reaD(w),InserT(++u,++v,w);
    for(int i=1;i<=k;i++) t[i]=inf;
    mx[root=0]=inf;tot=n;Ans=inf;
    GetRoot(1,0);
    Solve(root);
    return printf("%d\n",Ans==inf?-1:Ans),0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值