[BZOJ3669][UOJ#3][Noi2014][LCT]魔法森林

题意

求一条从1到N的路径,使路径上每条边A权值的最大值和B权值的最大值和最小。


刚开始写的暴力。
把边按A权值升序排序,每次操作加边,每次加边后用spfa维护图中的路径信息(可以不清空dis数组,这是个优化),这样可以暴力跑过去……还特别快……

#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#define N 50010
#define M 100010

using namespace std;

int n,m,cnt,Ans=1<<30;
int dis[N],V[N],G[N];
queue<int> Q;

struct edgef{
    int a,b,x,y;
}e[M];

struct edge{
    int t,nx,a,b;
}E[M<<2];

inline void reaD(int &x){
    char Ch=getchar();x=0;
    for(;Ch>'9'||Ch<'0';Ch=getchar());
    for(;Ch>='0'&&Ch<='9';x=x*10+Ch-'0',Ch=getchar());
}

inline bool cmp(const edgef &A,const edgef &B){return A.a!=B.a?A.a<B.a:A.b<B.b;}

inline void InserT(int x,int y,int a,int b){
    E[++cnt].t=y;E[cnt].a=a;E[cnt].b=b;E[cnt].nx=G[x];G[x]=cnt;
    E[++cnt].t=x;E[cnt].a=a;E[cnt].b=b;E[cnt].nx=G[y];G[y]=cnt;
}

int main(){
    reaD(n);reaD(m);
    for(int i=1;i<=m;i++) reaD(e[i].x),reaD(e[i].y),reaD(e[i].a),reaD(e[i].b);
    sort(e+1,e+1+m,cmp);
    for(int i=2;i<=n;i++) dis[i]=1<<30;
    for(int i=1,A;i<=m;i++){
        A=e[i].a;
        InserT(e[i].x,e[i].y,e[i].a,e[i].b);
        Q.push(e[i].x);Q.push(e[i].y);
        V[e[i].x]=V[e[i].y]=1;
        while(!Q.empty()){
            int x=Q.front();Q.pop();V[x]=0;
            for(int i=G[x];i;i=E[i].nx)
                if(dis[E[i].t]>max(dis[x],E[i].b)){
                    dis[E[i].t]=max(dis[x],E[i].b);
                    if(!V[E[i].t]) Q.push(E[i].t),V[E[i].t]=1;
                }
        }
        Ans=min(Ans,A+dis[n]);
    }
    if(Ans==1<<30) puts("-1"); else printf("%d\n",Ans);
    return 0;
}

当然UOJ没有那么友好……所以改成lct来维护就好了

#include <cstdio>
#include <algorithm>
#define N 200010

using namespace std;

int n,m,Ans=1<<30;
int fa[N],f[N],ch[N][2],v[N],maxn[N],rev[N],sta[N],tp;

struct edgef{
    int a,b,x,y;
    friend bool operator <(edgef A,edgef B){
        return A.a<B.a;
    }
}e[N];

inline char C(){
    static char buf[100000],*p1=buf,*p2=buf;
    if(p1==p2){
        p2=(p1=buf)+fread(buf,1,100000,stdin);
        if(p1==p2) return EOF;
    }
    return *p1++;
}

inline void reaD(int &x){
    char Ch=C();x=0;
    for(;Ch>'9'||Ch<'0';Ch=C());
    for(;Ch>='0'&&Ch<='9';x=x*10+Ch-'0',Ch=C());
}

int fifa(int x){return fa[x]==x?x:fa[x]=fifa(fa[x]);}
inline int isl(int x){return ch[f[x]][1]==x;}
inline int isr(int x){return ch[f[x]][0]!=x&&ch[f[x]][1]!=x;}
inline void upd(int x){
    if(!x)return;maxn[x]=x;
    if(ch[x][0]&&v[maxn[ch[x][0]]]>v[maxn[x]]) maxn[x]=maxn[ch[x][0]];
    if(ch[x][1]&&v[maxn[ch[x][1]]]>v[maxn[x]]) maxn[x]=maxn[ch[x][1]];
}
inline void pushdown(int x){
    if(!(x&&rev[x])) return ;
    swap(ch[x][0],ch[x][1]);
    if(ch[x][0]) rev[ch[x][0]]^=1;
    if(ch[x][1]) rev[ch[x][1]]^=1;
    rev[x]=0;
}
inline void rot(int x){
    int y=f[x],z=f[y],lor=isl(x);
    if(!isr(y)) ch[z][ch[z][1]==y]=x;
    f[x]=z;ch[y][lor]=ch[x][lor^1];
    if(ch[y][lor]) f[ch[y][lor]]=y;
    ch[x][lor^1]=y;f[y]=x;
    upd(y);upd(x);
}
inline void splay(int x){
    sta[++tp]=x;
    for(int i=x;!isr(i);i=f[i]) sta[++tp]=f[i];
    while(tp) pushdown(sta[tp--]);
    for(;!isr(x);rot(x))if(!isr(f[x]))
        if(isl(f[x])^isl(x)) rot(x); else rot(f[x]);
}
inline void access(int x){
    int t=0;
    for(;x;t=x,x=f[x])
        splay(x),ch[x][1]=t,upd(x);
}
inline void reverse(int x){access(x);splay(x);rev[x]^=1;}
inline int newd(int w,int u){v[u]=w;return u;}
inline void link(int x,int y){reverse(x);f[x]=y;splay(x);}
inline void cut(int x,int y){reverse(x);access(y);splay(y);ch[y][0]=f[x]=0;}
inline int query(int x,int y){reverse(x);access(y);splay(y);return maxn[y];}

int main(){
    freopen("forest.in","r",stdin);
    freopen("forest.out","w",stdout);
    reaD(n);reaD(m);
    for(int i=1;i<=m;i++)reaD(e[i].x),reaD(e[i].y),reaD(e[i].a),reaD(e[i].b);
    sort(e+1,e+1+m);
    for(int i=1;i<=n;i++) fa[i]=i;
    for(int i=1;i<=m;i++){
        int x=fifa(e[i].x),y=fifa(e[i].y),z;
        if(x!=y){
            link(e[i].x,newd(e[i].b,n+i));
            link(e[i].y,n+i);
            fa[x]=y;
        }
        else{
            int k=query(e[i].x,e[i].y);
            if(v[k]>e[i].b){
                cut(k,e[k-n].x);
                cut(k,e[k-n].y);
                link(e[i].x,newd(e[i].b,n+i));
                link(e[i].y,n+i);
            }
        }
        if(fifa(1)==fifa(n)) Ans=min(Ans,e[i].a+v[query(1,n)]);
    }
    if(Ans==(1<<30)) puts("-1"); else printf("%d\n",Ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值