[BZOJ4127][树链剖分][线段树][乱搞]Abs

26 篇文章 0 订阅
9 篇文章 0 订阅
题意

给定一棵树,设计数据结构支持以下操作
1 u v d 表示将路径 (u,v) 加d
2 u v 表示询问路径 (u,v) 上点权绝对值的和


想了半天不会做……
搜了发题解

因为d非负,所以最多n次有一个从负数变成正数,那么用线段树记录一下区间中最大的负数,当这个最大负数加上d后变成正数的时候,继续往下update,因为最多只会有n次,所以复杂度也是nlogn级别的

#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 100010
#define V E[i].t

using namespace std;

typedef long long ll;

ll n,m,u,v,cnt,g,op,x;
int A[N],G[N],fa[N],top[N],match[N],p[N],dpt[N],size[N],son[N];

struct edge{
  int t,nx;
}E[N<<1];

struct seg{
  int l,r,sum0,sum1;
  ll Min,Max,x,flg;
}T[N<<2];

inline void reaD(int &x){
  char c=getchar(); x=0; int f=1;
  for(;c>57||c<48;c=getchar())if(c=='-') f=-1;
  for(;c>=48&&c<=57;x=x*10+c-48,c=getchar());x*=f;
}

inline void reaD(ll &x){
  char c=getchar(); x=0; int f=1;
  for(;c>57||c<48;c=getchar()) if(c=='-') f=-1;
  for(;c>=48&&c<=57;x=x*10+c-48,c=getchar()); x*=f;
}

inline void add(int x,int y){
  E[++cnt].t=y; E[cnt].nx=G[x]; G[x]=cnt;
  E[++cnt].t=x; E[cnt].nx=G[y]; G[y]=cnt;
}

void dfs0(int x,int f){
  fa[x]=f; dpt[x]=dpt[f]+1; size[x]=1;
  for(int i=G[x];i;i=E[i].nx)
    if(V!=f){
      dfs0(V,x);
      if(size[V]>size[son[x]]) son[x]=V;
      size[x]+=size[V];
    }
}

void dfs1(int x,int t){
  p[match[x]=++g]=x; top[x]=t;
  if(son[x]) dfs1(son[x],t);
  for(int i=G[x];i;i=E[i].nx)
    if(V!=fa[x]&&V!=son[x]) dfs1(V,V);
}

inline void updat(int g){
  T[g].x=T[g<<1].x+T[g<<1|1].x;
  T[g].sum0=T[g<<1].sum0+T[g<<1|1].sum0;
  T[g].sum1=T[g<<1].sum1+T[g<<1|1].sum1;
  T[g].Max=-(1<<30);
  if(T[g<<1].sum0) T[g].Max=T[g<<1].Max;
  if(T[g<<1|1].sum0) T[g].Max=max(T[g].Max,T[g<<1|1].Max);
}

inline ll Abs(ll x){
  return x<0?-x:x;
}

void Build(int g,int l,int r){
  T[g].l=l; T[g].r=r;
  if(l==r){
    if(A[p[l]]<0) T[g].sum0=1,T[g].Max=A[p[l]],T[g].x=-A[p[l]];
    else T[g].sum1=1,T[g].x=A[p[l]];
    return ;
  }
  int mid=l+r>>1;
  Build(g<<1,l,mid);
  Build(g<<1|1,mid+1,r);
  updat(g);
}

inline void pushdown(int g){
  if(T[g].flg){
    if(!T[g<<1].sum0) T[g<<1].x+=T[g].flg*(T[g<<1].r-T[g<<1].l+1);
    else T[g<<1].x+=T[g].flg*(T[g<<1].r-T[g<<1].l+1-T[g<<1].sum0*2);
    if(!T[g<<1|1].sum0) T[g<<1|1].x+=T[g].flg*(T[g<<1|1].r-T[g<<1|1].l+1);
    else T[g<<1|1].x+=T[g].flg*(T[g<<1|1].r-T[g<<1|1].l+1-T[g<<1|1].sum0*2);
    T[g<<1].Max+=T[g].flg; T[g<<1|1].Max+=T[g].flg;
    T[g<<1].flg+=T[g].flg;
    T[g<<1|1].flg+=T[g].flg;
    T[g].flg=0;
  }
}

void update(int g,int l,int r,int x){
  if(T[g].l==T[g].r){
    if(!T[g].sum0) T[g].x+=x;
    else if(T[g].Max+x<0) T[g].Max+=x,T[g].x-=x;
    else T[g].sum0=0,T[g].sum1=1,T[g].x=T[g].Max+x;
    return ;
  }
  if(T[g].l==l&&T[g].r==r){
    if(!T[g].sum0){
      T[g].x+=1ll*x*(T[g].r-T[g].l+1);
      T[g].flg+=x;
      return ;
    }
    if(T[g].Max+x<0){
      T[g].Max+=x;
      T[g].x+=1ll*(T[g].r-T[g].l+1-T[g].sum0*2)*x;
      T[g].flg+=x;
      return ;
    }
  }
  pushdown(g);
  int mid=T[g].l+T[g].r>>1;
  if(r<=mid) update(g<<1,l,r,x);
  else if(l>mid) update(g<<1|1,l,r,x);
  else update(g<<1,l,mid,x),update(g<<1|1,mid+1,r,x);
  updat(g);
}

inline void update(int u,int v,int x){
  while(top[u]!=top[v]){
    if(dpt[top[u]]<dpt[top[v]]) swap(u,v);
    update(1,match[top[u]],match[u],x);
    u=fa[top[u]];
  }
  if(dpt[u]<dpt[v]) swap(u,v);
  update(1,match[v],match[u],x);
}

ll query(int g,int l,int r){
  if(T[g].l==l&&T[g].r==r) return T[g].x;
  pushdown(g);
  int mid=T[g].l+T[g].r>>1;
  if(r<=mid) return query(g<<1,l,r);
  if(l>mid) return query(g<<1|1,l,r);
  return query(g<<1,l,mid)+query(g<<1|1,mid+1,r);
}

inline ll query(int u,int v){
  ll r=0;
  while(top[u]!=top[v]){
    if(dpt[top[u]]<dpt[top[v]]) swap(u,v);
    r+=query(1,match[top[u]],match[u]);
    u=fa[top[u]];
  }
  if(dpt[u]<dpt[v]) swap(u,v);
  return r+query(1,match[v],match[u]);
}

int main(){
  freopen("4127.in","r",stdin);
  freopen("4127.out","w",stdout);
  reaD(n); reaD(m);
  for(int i=1;i<=n;i++) reaD(A[i]);
  for(int i=1;i<n;i++)
    reaD(u),reaD(v),add(u,v);
  dfs0(1,0);
  dfs1(1,1);
  Build(1,1,g);
  for(int i=1;i<=m;i++){
    reaD(op);
    if(op==1){
      reaD(u); reaD(v); reaD(x);
      update(u,v,x);
    }
    else{
      reaD(u); reaD(v);
      printf("%lld\n",query(u,v));
    }
  }
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表棋盘上每个点的数字。 输出格式 输出一个整数,表所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值