枚举左端点i,因为左端点固定,那么区间的And值不超过31种(每次And一个数,只可能使这个数二进制下的某一位变成0),那么每次二分出他变化的区间,因为子串xor可以变成两个xor前缀的xor,所以只要找出在这个区间中xor前缀等于B[i] xor A,B[i]为1~i的xor值,A为这个区间的And值。
做这题时我是用二分加线段树有两个log,后来想在线段树上二分,打着打着猛然想起有种东西叫ST表…
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
#define N 100010
using namespace std;
int n;
int A[N],B[N],Log2[N];
int st[N][25];
long long Ans;
map<int,vector<int> > M;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void rea(int &x){
char c=nc(); x=0;
for(;c>'9'||c<'0';c=nc());for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
}
void Build(){
int t=Log2[n];
for(int i=1;i<=n;i++) st[i][0]=A[i];
for(int i=1;i<=t;i++)
for(int j=1;j+(1<<i-1)<=n;j++)
st[j][i]=(st[j][i-1]&st[j+(1<<i-1)][i-1]);
}
int query(int l,int r){
int t=Log2[r-l+1];
return st[l][t]&st[r-(1<<t)+1][t];
}
int main(){
freopen("hack.in","r",stdin);
freopen("hack.out","w",stdout);
rea(n);
for(int i=1;i<=n;i++) rea(A[i]);
for(int i=1;i<=n;i++) M[B[i]=B[i-1]^A[i]].push_back(i);
for(int i=1;i<=n;i++) Log2[i]=Log2[i-1]+((1<<Log2[i-1]+1)==i);
Build();
//for(int i=0;i<M[0].size();i++) printf("%d ",M[0][i]);
for(int i=1;i<=n;i++){
int cur=A[i],r=i;
for(int p;r<=n;r=p+1){
int L=r,R=n,mid; p=r;
//p=check(1,cur,p,n);
while(L<=R) query(i,mid=L+R>>1)==cur?L=(p=mid)+1:R=mid-1;
if(M.count(cur^B[i-1])){
int now=upper_bound(M[cur^B[i-1]].begin(),M[cur^B[i-1]].end(),p)-lower_bound(M[cur^B[i-1]].begin(),M[cur^B[i-1]].end(),r);
Ans+=now;
}
cur&=A[p+1];
}
}
cout<<Ans<<endl;
return 0;
}