[数论 反演 && 莫队] hdu4676 . Sum Of Gcd

本文介绍了一种针对特定数论求和问题的优化算法,该算法通过预处理和分块技术来加速求解过程。具体地,文章讨论了如何快速计算形如∑i=1n∑j=1ngcd(i,j)×bi×bj的表达式,并提供了一个高效的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设我们知道一个区间内数字 i 是否出现,另它为 bi
推一推

i=1nj=1ngcd(i,j)×bi×bj

=Tf(T)(T|ibi)2

其中

f(T)=d|Td×μ(Td)

维护一下这个东西就好了

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>

using namespace std;

typedef long long ll;

const int N=20010;

int t,n,q,S,a[N],b[N],mu[N],p[N];
ll f[N];
vector<int> fact[N];

struct Qu{
    int l,r,g;
    friend bool operator <(Qu a,Qu b){
        return a.l/S<b.l/S || (a.l/S==b.l/S && a.r<b.r);
    }
}Q[N];

inline void Pre(){
    mu[1]=1;
    for(int i=2;i<=20000;i++){
        if(!p[i]) p[++*p]=i,mu[i]=-1;
        for(int j=1;j<=*p && p[j]*i<=20000;j++)
            if(p[p[j]*i]=1,i%p[j]) mu[i*p[j]]=-mu[i];
            else{
                mu[i*p[j]]=0; break;
            }
    }
    for(int i=1;i<=20000;i++)
        for(int j=i;j<=20000;j+=i)
            f[j]+=i*mu[j/i],fact[j].push_back(i);
}

ll nans,sum,ans[N];

inline void Add(int x,int y){
    sum+=x*y;
    for(int i=0;i<fact[x].size();i++){
        int t=fact[x][i];
        nans-=1LL*f[t]*b[t]*b[t];
        b[t]+=y;
        nans+=1LL*f[t]*b[t]*b[t];
    }
}

int main(){
    scanf("%d",&t); Pre();
    int ttt=0;
    while(t--){
        ttt++;
        scanf("%d",&n); S=sqrt(n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]),b[i]=0;
        nans=sum=0;
        scanf("%d",&q);
        for(int i=1;i<=q;i++)
            scanf("%d%d",&Q[i].l,&Q[i].r),Q[i].g=i;
        sort(Q+1,Q+1+q);
        int L=1,R=0;
        for(int i=1;i<=q;i++){
            while(R<Q[i].r) Add(a[++R],1);
            while(R>Q[i].r) Add(a[R--],-1);
            while(L>Q[i].l) Add(a[--L],1);
            while(L<Q[i].l) Add(a[L++],-1);
            ans[Q[i].g]=nans-sum>>1;
        }
        printf("Case #%d:\n",ttt);
        for(int i=1;i<=q;i++)
            printf("%lld\n",ans[i]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值