假设我们知道一个区间内数字
i
是否出现,另它为
推一推
∑i=1n∑j=1ngcd(i,j)×bi×bj
=∑Tf(T)(∑T|ibi)2
其中
f(T)=∑d|Td×μ(Td)
维护一下这个东西就好了
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=20010;
int t,n,q,S,a[N],b[N],mu[N],p[N];
ll f[N];
vector<int> fact[N];
struct Qu{
int l,r,g;
friend bool operator <(Qu a,Qu b){
return a.l/S<b.l/S || (a.l/S==b.l/S && a.r<b.r);
}
}Q[N];
inline void Pre(){
mu[1]=1;
for(int i=2;i<=20000;i++){
if(!p[i]) p[++*p]=i,mu[i]=-1;
for(int j=1;j<=*p && p[j]*i<=20000;j++)
if(p[p[j]*i]=1,i%p[j]) mu[i*p[j]]=-mu[i];
else{
mu[i*p[j]]=0; break;
}
}
for(int i=1;i<=20000;i++)
for(int j=i;j<=20000;j+=i)
f[j]+=i*mu[j/i],fact[j].push_back(i);
}
ll nans,sum,ans[N];
inline void Add(int x,int y){
sum+=x*y;
for(int i=0;i<fact[x].size();i++){
int t=fact[x][i];
nans-=1LL*f[t]*b[t]*b[t];
b[t]+=y;
nans+=1LL*f[t]*b[t]*b[t];
}
}
int main(){
scanf("%d",&t); Pre();
int ttt=0;
while(t--){
ttt++;
scanf("%d",&n); S=sqrt(n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),b[i]=0;
nans=sum=0;
scanf("%d",&q);
for(int i=1;i<=q;i++)
scanf("%d%d",&Q[i].l,&Q[i].r),Q[i].g=i;
sort(Q+1,Q+1+q);
int L=1,R=0;
for(int i=1;i<=q;i++){
while(R<Q[i].r) Add(a[++R],1);
while(R>Q[i].r) Add(a[R--],-1);
while(L>Q[i].l) Add(a[--L],1);
while(L<Q[i].l) Add(a[L++],-1);
ans[Q[i].g]=nans-sum>>1;
}
printf("Case #%d:\n",ttt);
for(int i=1;i<=q;i++)
printf("%lld\n",ans[i]);
}
return 0;
}