题目链接:http://poj.org/problem?id=2288
题意:仍然是求一条哈密顿回路,不过权值和的计算包括三部分:所经过的点权和,连续经过的两个点的权值乘积,连续三个点彼此可达则再加上三点乘积,问最大权值为多少,且有多少种方案达到该权值,注意一条路径的走法只能算一次
评价:这题我一看就知道是状压dp,一般我能一眼看出来思路的都是水题,但是实现上出了很多问题,原来这题是会超int的,开long long就过了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<algorithm>
#define INF 0x3f3f3f3f
#define mod 1000000007
using namespace std;
int n,m;
char a[15][15];
long long dp[1<<14][15][15];
long long num[1<<14][15][15];
int v[15];
void init()
{
memset(dp,-1,sizeof(dp));
memset(a,0,sizeof(a));
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++)
scanf("%d",v+i);
int x,y;
while(m--)
{
scanf("%d%d",&x,&y);
x--;
y--;
a[x][y]=a[y][x]=1;
}
if(n==1)
{
printf("%d 1\n",v[0]);
continue;
}
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(i!=j&&a[i][j])
{
dp[(1<<i)|(1<<j)][i][j]=v[i]+v[j]+v[i]*v[j];
num[(1<<i)|(1<<j)][i][j]=1;
}
}
for(int s=0;s<(1<<n);s++)
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(dp[s][i][j]!=-1)
{
for(int k=0;k<n;k++)
{
if((s&(1<<k))||!(a[j][k]))
continue;
long long temp=dp[s][i][j]+v[k]+v[k]*v[j]+(a[i][k]?v[i]*v[j]*v[k]:0);
if(temp>dp[s|(1<<k)][j][k])
{
dp[s|(1<<k)][j][k]=temp;
num[s|(1<<k)][j][k]=num[s][i][j];
}
else
if(temp==dp[s|(1<<k)][j][k])
num[s|(1<<k)][j][k]+=num[s][i][j];
}
}
}
}
long long maxx=0;
long long numm=0;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(maxx<dp[(1<<n)-1][i][j])
{
maxx=dp[(1<<n)-1][i][j];
numm=num[(1<<n)-1][i][j];
}
else
{
if(maxx==dp[(1<<n)-1][i][j])
numm+=num[(1<<n)-1][i][j];
}
}
printf("%lld %lld\n",maxx,numm/2);
}
return 0;
}