(pat)A1103. Integer Factorization

17 篇文章 0 订阅
本文介绍了一种求解 K-P 分解问题的算法实现,该问题旨在将一个正整数 N 表达为 K 个正整数 P 次幂之和。通过深度优先搜索(DFS)的方法寻找所有可能的组合,并通过剪枝技巧优化搜索过程,以找到满足条件的最大因子序列。
摘要由CSDN通过智能技术生成

The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P(1<P<=7) P ( 1 < P <= 7 ) . The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n1^P + … nK^P

where ni (i=1, … K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen – sequence { a1, a2, … aK } is said to be larger than { b1, b2, … bK } if there exists 1<=L<=K such that ai=bi for ibL

If there is no solution, simple output “Impossible”.

Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible

评价:可以很容易看出此题是dfs模型。难在如何剪枝上,第5个样例超时,反正我是看了网上才知道要存所以可能的pow数。
dfs的模型得出不难,而剪枝等各种和常数的优化则是一个高深的学问。
代码

#include<iostream>
#include<cstdio>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
int n,k,p;
vector<int> ans,temp;
int Pow[25];
int cnt;
int getP(int a,int b)
{
    int ans=1;
    while(b)
    {
        if(b&1)
            ans*=a;
        a*=a;
        b>>=1;
    }
    return ans;
}
int maxSum=0;
void dfs(int left,int l,int pos)
{
    if(l==0&&left==0)
    {
        //cout<<"haha"<<endl;
        int sum=0;
        for(int i=0;i<temp.size();i++)sum+=temp[i];
        if(maxSum<sum)
        {
            ans=temp;
            maxSum=sum;
        }
        return;
    }
    while(Pow[pos]>left-l+1)pos--;//剪枝
    for(;Pow[pos]>=left/l;pos--)//这种剪枝是因为各个的factor的得出都是从大到小的,即下限不会超过平均水平,这个也是一个难点
    {
        //cout<<pos<<" "<<l<<endl;
        temp.push_back(pos);
        dfs(left-Pow[pos],l-1,pos);
        temp.erase(temp.end()-1);
    }

}
int main()
{
    cin>>n>>k>>p;
    for(cnt=1;getP(cnt,p)<=n-k+1;cnt++)
        Pow[cnt]=getP(cnt,p);
        cnt--;
    dfs(n,k,cnt);
    if(maxSum)
    {
        cout<<n<<" = "<<ans[0]<<"^"<<p;
        for(int i=1;i<ans.size();i++)
        cout<<" + "<<ans[i]<<"^"<<p;
    }
    else
    cout<<"Impossible";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值