【wanaflyCamp】Growth(dp)

题目描述

弱弱有两个属性a和b,这两个属性初始的时候均为0,每一天他可以通过努力,让a涨1点或b涨1点。

为了激励弱弱努力学习,我们共有n种奖励,第i种奖励有xi,yi,zi三种属性,若a ≥ xi且b ≥ yi,则弱弱在接下来的每一天都可以得到zi的分数。

问m天以后弱弱最多能得到多少分数。

输入

第一行一个两个整数n和m(1 ≤ n ≤ 1000,1 ≤ m ≤ 2000000000)。

接下来n行,每行三个整数xi,yi,zi(1 ≤ xi, yi ≤ 1000000000,1 ≤ zi ≤ 1000000)。

输出

一行一个整数表示答案。

样例输入
2 4
2 1 10
1 2 20

样例输出
50

提示

在样例中,弱弱可以这样规划:第一天a涨1,第二天b涨1,第三天b涨1,第四天a涨1。

共获得0 + 0 + 20 + 30 = 50分。

思路:先离散化,然后就可以dp了
设两个转移方程:v[i][j]表示当到底i时和地j时,v[i][j]接下来每天能增长的量。
转移 :

v[i][j]=v[i1][j]+v[i][j1]v[i1][j1]+t[i][j] v [ i ] [ j ] = v [ i − 1 ] [ j ] + v [ i ] [ j − 1 ] − v [ i − 1 ] [ j − 1 ] + t [ i ] [ j ]

设dp[i][j]为到第i和j时的最大值
转移:
dp[i][j]=v[i][j]+max(dp[i1][j]+(X[i]X[i1]1)v[i1][j],dp[i][j1]+(Y[j]Y[j1]1)v[i][j+1]) d p [ i ] [ j ] = v [ i ] [ j ] + m a x ( d p [ i − 1 ] [ j ] + ( X [ i ] − X [ i − 1 ] − 1 ) v [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] + ( Y [ j ] − Y [ j − 1 ] − 1 ) v [ i ] [ j + 1 ] )

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define maxx 1005
#define ll long long
using namespace std;
ll dp[maxx][maxx];
int X[maxx];
int Y[maxx];
ll v[maxx][maxx];
struct node
{
    int x,y,z;
}p[maxx];
int cnt1,cnt2,cnt;
int getX(int num)
{
    int l=1,r=cnt1;
    while(l<=r)
    {
        int mid=(l+r)>>1;
        if(X[mid]==num)return mid;
        if(X[mid]<num)l=mid+1;
        else r=mid-1;
    }
    return 0;
}
int getY(int num)
{
    int l=1,r=cnt2;
    while(l<=r)
    {
        int mid=(l+r)>>1;
        if(Y[mid]==num)return mid;
        if(Y[mid]<num) l=mid+1;
        else r=mid-1;
    }
}
main()
{
    int n,m;
    cin>>n>>m;
    int x,y,z;
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d%d",&x,&y,&z);
        if(x+y>m)continue;
        p[++cnt].x=x;
        p[cnt].y=y;
        p[cnt].z=z;
        X[++cnt1]=x;
        Y[++cnt2]=y;
    }
    sort(X+1,X+1+cnt1);
    cnt1=unique(X+1,X+1+cnt1)-X-1;
    sort(Y+1,Y+1+cnt2);
    cnt2=unique(Y+1,Y+1+cnt2)-Y-1;

    for(int i=1;i<=cnt;i++)
        v[getX(p[i].x)][getY(p[i].y)]+=p[i].z;
    for(int i=1;i<=cnt1;i++)
    for(int j=1;j<=cnt2;j++)
        v[i][j]+=v[i-1][j]+v[i][j-1]-v[i-1][j-1];
    for(int i=1;i<=cnt1;i++)
    for(int j=1;j<=cnt2;j++)
        dp[i][j]=v[i][j]+max(dp[i-1][j]+(X[i]-X[i-1]-1)*v[i-1][j],dp[i][j-1]+(Y[j]-Y[j-1]-1)*v[i][j-1]);                
    ll ans=0;
    for(int i=1;i<=cnt1;i++)
    for(int j=1;j<=cnt2;j++)
        if(X[i]+Y[j]<=m)ans=max(ans,dp[i][j]+(m-X[i]-Y[j])*v[i][j]);
    cout<<ans<<endl; 
    return 0;
} 
/**************************************************************
    Problem: 1039
    User: coldfresh
    Language: C++
    Result: 正确
    Time:87 ms
    Memory:17344 kb
****************************************************************/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值