题目描述
弱弱有两个属性a和b,这两个属性初始的时候均为0,每一天他可以通过努力,让a涨1点或b涨1点。
为了激励弱弱努力学习,我们共有n种奖励,第i种奖励有xi,yi,zi三种属性,若a ≥ xi且b ≥ yi,则弱弱在接下来的每一天都可以得到zi的分数。
问m天以后弱弱最多能得到多少分数。
输入
第一行一个两个整数n和m(1 ≤ n ≤ 1000,1 ≤ m ≤ 2000000000)。
接下来n行,每行三个整数xi,yi,zi(1 ≤ xi, yi ≤ 1000000000,1 ≤ zi ≤ 1000000)。
输出
一行一个整数表示答案。
样例输入
2 4
2 1 10
1 2 20
样例输出
50
提示
在样例中,弱弱可以这样规划:第一天a涨1,第二天b涨1,第三天b涨1,第四天a涨1。
共获得0 + 0 + 20 + 30 = 50分。
思路:先离散化,然后就可以dp了
设两个转移方程:v[i][j]表示当到底i时和地j时,v[i][j]接下来每天能增长的量。
转移 :
v[i][j]=v[i−1][j]+v[i][j−1]−v[i−1][j−1]+t[i][j]
v
[
i
]
[
j
]
=
v
[
i
−
1
]
[
j
]
+
v
[
i
]
[
j
−
1
]
−
v
[
i
−
1
]
[
j
−
1
]
+
t
[
i
]
[
j
]
设dp[i][j]为到第i和j时的最大值
转移:
dp[i][j]=v[i][j]+max(dp[i−1][j]+(X[i]−X[i−1]−1)v[i−1][j],dp[i][j−1]+(Y[j]−Y[j−1]−1)v[i][j+1])
d
p
[
i
]
[
j
]
=
v
[
i
]
[
j
]
+
m
a
x
(
d
p
[
i
−
1
]
[
j
]
+
(
X
[
i
]
−
X
[
i
−
1
]
−
1
)
v
[
i
−
1
]
[
j
]
,
d
p
[
i
]
[
j
−
1
]
+
(
Y
[
j
]
−
Y
[
j
−
1
]
−
1
)
v
[
i
]
[
j
+
1
]
)
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define maxx 1005
#define ll long long
using namespace std;
ll dp[maxx][maxx];
int X[maxx];
int Y[maxx];
ll v[maxx][maxx];
struct node
{
int x,y,z;
}p[maxx];
int cnt1,cnt2,cnt;
int getX(int num)
{
int l=1,r=cnt1;
while(l<=r)
{
int mid=(l+r)>>1;
if(X[mid]==num)return mid;
if(X[mid]<num)l=mid+1;
else r=mid-1;
}
return 0;
}
int getY(int num)
{
int l=1,r=cnt2;
while(l<=r)
{
int mid=(l+r)>>1;
if(Y[mid]==num)return mid;
if(Y[mid]<num) l=mid+1;
else r=mid-1;
}
}
main()
{
int n,m;
cin>>n>>m;
int x,y,z;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&x,&y,&z);
if(x+y>m)continue;
p[++cnt].x=x;
p[cnt].y=y;
p[cnt].z=z;
X[++cnt1]=x;
Y[++cnt2]=y;
}
sort(X+1,X+1+cnt1);
cnt1=unique(X+1,X+1+cnt1)-X-1;
sort(Y+1,Y+1+cnt2);
cnt2=unique(Y+1,Y+1+cnt2)-Y-1;
for(int i=1;i<=cnt;i++)
v[getX(p[i].x)][getY(p[i].y)]+=p[i].z;
for(int i=1;i<=cnt1;i++)
for(int j=1;j<=cnt2;j++)
v[i][j]+=v[i-1][j]+v[i][j-1]-v[i-1][j-1];
for(int i=1;i<=cnt1;i++)
for(int j=1;j<=cnt2;j++)
dp[i][j]=v[i][j]+max(dp[i-1][j]+(X[i]-X[i-1]-1)*v[i-1][j],dp[i][j-1]+(Y[j]-Y[j-1]-1)*v[i][j-1]);
ll ans=0;
for(int i=1;i<=cnt1;i++)
for(int j=1;j<=cnt2;j++)
if(X[i]+Y[j]<=m)ans=max(ans,dp[i][j]+(m-X[i]-Y[j])*v[i][j]);
cout<<ans<<endl;
return 0;
}
/**************************************************************
Problem: 1039
User: coldfresh
Language: C++
Result: 正确
Time:87 ms
Memory:17344 kb
****************************************************************/