CCPC-WannaFly-Camp #1D Growth

**问题 D: Growth** 时间限制: 1 Sec 内存限制: 256 MB 提交: 68 解决: 11 [提交][状态][讨论版][命题人:admin] 题目描述

弱弱有两个属性a和b,这两个属性初始的时候均为0,每一天他可以通过努力,让a涨1点或b涨1点。

为了激励弱弱努力学习,我们共有n种奖励,第i种奖励有xi,yi,zi三种属性,若a ≥ xi且b ≥ yi,则弱弱在接下来的每一天都可以得到zi的分数。

问m天以后弱弱最多能得到多少分数。

输入

第一行一个两个整数n和m(1 ≤ n ≤ 1000,1 ≤ m ≤ 2000000000)。

接下来n行,每行三个整数xi,yi,zi(1 ≤ xi, yi ≤ 1000000000,1 ≤ zi ≤ 1000000)。

输出

一行一个整数表示答案。

样例输入
2 4
2 1 10
1 2 20

样例输出
50

提示

在样例中,弱弱可以这样规划:第一天a涨1,第二天b涨1,第三天b涨1,第四天a涨1。

共获得0 + 0 + 20 + 30 = 50分。

离散 + DP + 前缀和

#include <bits/stdc++.h>
 
using namespace std;
 
#define PI 3.1415926
#define sc(a)  scanf("%d",&a)
#define pfs(a) printf("%d ",a)
#define pfn(a) printf("%d\n",a);
#define pfln(a) printf("%lld\n",a);
#define rep(n) for(int i = 0; i < n; i++)
#define per(n) for(int i = m-1; i >= 0; i--)
 
typedef long long LL;
typedef pair<int,int> P;
const int maxn = 1100;
const int mod = 1e9+7;
const int INF = 0x3f3f3f3f;
 
int n,m;
int x[maxn],y[maxn],z[maxn];
set<int> cntx,cnty;
map<P,int> mp;
int tx[maxn],ty[maxn];
int ti,tj;
LL v[maxn][maxn];
LL dp[maxn][maxn];
 
int main()
{
    sc(n),sc(m);
    ti = tj = 1;
    rep(n) {
        sc(x[i]),sc(y[i]),sc(z[i]);
        if(mp.count(P(x[i],y[i])) == 0) mp[P(x[i],y[i])] = z[i];
        else                            mp[P(x[i],y[i])] += z[i];
        if(cntx.count(x[i]) == 0)       cntx.insert(x[i]),tx[ti++] = x[i];
        if(cnty.count(y[i]) == 0)       cnty.insert(y[i]),ty[tj++] = y[i];
    }
    sort(tx,tx+ti);
    sort(ty,ty+tj);
 
    memset(v,0,sizeof(v));
    memset(dp,0,sizeof(dp));
 
    for(int i = 1; i < ti; i++)
            for(int j = 1; j < tj; j++)
                {
 
                if(mp.count(P(tx[i],ty[j])) == 0)  v[i][j] = v[i-1][j] + v[i][j-1] - v[i-1][j-1];
                 else                              v[i][j] = v[i-1][j] + v[i][j-1] - v[i-1][j-1] + mp[P(tx[i],ty[j])];
                // cout << v[i][j] << endl;
                }
 
    for(int i = 0; i < ti; i++)
          for(int j = 0; j < tj; j++)
          {
           dp[i][j+1] = max(dp[i][j+1],dp[i][j] + v[i][j] * (ty[j+1]-ty[j]-1) + v[i][j+1]);
           dp[i+1][j] = max(dp[i+1][j],dp[i][j] + v[i][j] * (tx[i+1]-tx[i]-1) + v[i+1][j]);
          }
 
    LL ans = 0;
    for(int i = 1; i <= ti; i++)
        {
            for(int j = 1; j <= tj; j++)
           {
              // cout << dp[i][j] << " ";
               ans = max(ans,dp[i][j] + (m-tx[i]-ty[j])*v[i][j]);
           }
          // cout << endl;
        }
    pfln(ans);
     return 0;
 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值