一个投资例子解决对统计量、估计量、抽样分布、标准误差等概念感到模糊的问题

我想用一个例子来说明我想讲的内容。首先,我们先假设这样一个情况,假设我们知道股票收益率的总体,就是股票收益率只会出现下面几种情况。(图1)

股票收益率的总体(图 1)
收益率r

1%

2%3%4%
发生概率p0.250.250.25

0.25

这个时候我们能求出总体的数字特征。

E(r)=\sum pr=2.5%=\mu 

D(r)=\sum [p(r-\mu)^{^{2}}]=5=\sigma ^{2}

SD(r)=\sqrt{D(r)}=\sqrt{5}%

总体的标准差表达的意思是,任意抽取一支股票,偏离我们所期望的收益率一个偏差单位。

如果我们手里现在有n只股票,可以认为这n支股票是在股票总体里独立重复随机抽取n次获得的。每只股票的收益率定义为r_{i}(i=1,2,3,4,5,...,n)。数字特征如下。因为样本是在总体中抽取出来的,所以自然有样本分布服从总体分布。

E(r_{i})=E(r)=\mu

D(r_{i})=D(r)=\sigma ^{2}

SD(r_i)=\sqrt{D(r_i)}

现在我们来分析我们手里的股票,假设我手里现在有m组风险资产组合(假设组合里只有股票,且都是这个总体里的股票),每组资产组合有n支股票。

这m组资产组合中,通过每组组合,我们都能得到一个样本均值\bar{r},它组合中每支股票的平均收益率。它是一个由样本值得到的一个函数,这样的函数叫做统计量,我们现在来分析一下这个统计量的一些性质。

首先,这个统计量是总体期望的无偏估计量,证明如下。实际上,我们用矩估方法估计总体期望,得到的也是样本均值这个统计量。

E(\bar{r})=E(\frac{1}{n}\sum r_{i})=\frac{1}{n}\sum E(r_i)=\frac{1}{n}n\mu=\mu

我们可以得到m组样本均值,因为我们有m组资产组合,那我们可以得到m个样本均值。通过这些样本均值,我们可以得到它的数字特征,即它的分布我们也可以描述出来,我们称这种多组抽样得到的统计量的分布为抽样分布。

我们通过数理分析,来分析样本均值的分布(从数字特征入手)。在刚才,我们知道了样本均值的期望。接下来,我们处理方差、标准差问题。

D(\bar{r})=D(\frac{1}{n}\sum r_i)=\frac{1}{n^{2}}D(\sum r_i)=\frac{1}{n^2}\sum D(r_i)=\frac{n\sigma ^2}{n^2}=\frac{\sigma ^2}{n}

SD(\bar{r})=\sqrt{D(\bar{r})}=\frac{\sigma }{\sqrt{n}}

以上,我们得到了投资组合的每支股票收益率均值的数字特征。

要注意的是,这些特征讨论的是样本统计量的分布,其中的SD我们可以认为是样本值对样本均值具有的一个偏差单位,同时样本均值也是总体期望的一个估计量,这也是对总体期望的偏差。我们定义样本的这个偏差为标准误差,它衡量了样本值的离散程度。从这里我们可以理解,当我们做回归的时候,SRF被解释变量系数的标准误差也就是它的一个标准差,因为这个系数也是由样本值得到的一个函数,且这个系数是总体回归模型中被解释变量系数的无偏估计量,所以这个标准误差也可以描述由样本得到的系数与PRF系数的一个偏差单位。标准误差英文是Standard Error,我们可以用SE来表示。

接下来,我们创造问题,解决问题。我们思考m组风险资产组合的每组收益率问题。由上面的讨论,我们能得到每一组资产组合中每只股票平均收益率,那么每个组合的总收益率是n\bar{r}。我们定义它为R。我们来讨论一下这个抽样分布。

E(R)=E(n\bar{r})=n\mu

D(R)=D(n\bar{r})=n^2D(\bar{r})=n^2\sigma

SE(R)=\sqrt{D(R)}=\sqrt{n}\sigma

本篇完

希望大家对这些定义有一个具体的理解。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值