链接地址:http://ac.nbutoj.com/Problem/view.xhtml?id=1318
此题就是一个欧拉回路。
将每一个房间都理解为一个点,然后门就是房间间的连接条件,门的个数就是该点的度,只要所有点的度出现奇数的次数小于3就表示可以走完所有的连接且不重复。
那么还有一个条件就是先判断此图是否是完全连通的。DFS一下就可以了。
出题代码:
此题就是一个欧拉回路。
将每一个房间都理解为一个点,然后门就是房间间的连接条件,门的个数就是该点的度,只要所有点的度出现奇数的次数小于3就表示可以走完所有的连接且不重复。
那么还有一个条件就是先判断此图是否是完全连通的。DFS一下就可以了。
出题代码:
#include <set>
#include <map>
#include <list>
#include <stack>
#include <queue>
#include <cmath>
#include <cstdio>
#include <vector>
#include <iomanip>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
int m, n, s;
char tu[110][110];
int dir[4][2] = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}};
void dfs(int x, int y)
{
int p = 0;
tu[x][y] = 'A';
for (int i = 0; i < 4; i++)
{
int xx = x + dir[i][0];
int yy = y + dir[i][1];
if (xx < 0 || yy < 0 || xx >= m || yy >= n) continue;
if (tu[xx][yy] != 'X') p++;
}
if (p % 2) s++;
for (int i = 0; i < 4; i++)
{
int xx = x + dir[i][0];
int yy = y + dir[i][1];
if (xx < 0 || yy < 0 || xx >= m || yy >= n) continue;
if (tu[xx][yy] == 'O') dfs(xx, yy);
}
}
int main()
{
//freopen("data.in", "r", stdin);
//freopen("data.out", "w", stdout);
while (~scanf("%d%d", &m, &n))
{
s = 0;
for (int i = 0; i < m; i++)
{
scanf("%s", tu[i]);
}
int q = 0;
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (tu[i][j] == 'O')
{
if (q == 0)
{
q = 1;
dfs(i, j);
}
else
{
s = 3;
q = 10;
break;
}
}
}
if (q == 10) break;
}
if (s > 2) printf("NO\n");
else printf("YES\n");
}
return 0;
}