深入解读 Spark 宽依赖和窄依赖(ShuffleDependency & NarrowDependency)

目前,网上有关宽窄依赖的博客大多都使用下面这张图作为讲解:

Image for post

实际上,这幅图所表达的内容并不完善。其中,窄依赖的内容表达的不够全面,而宽依赖的部分容易让人产生误解。本文,我将用新的绘图带大家搞清楚究竟什么是宽依赖(ShuffleDependency),什么是窄依赖(NarrowDependency)。

为什么会有宽窄依赖?

我们知道,在 Spark 中,数据抽象表示为统一的数据模型 RDD。每一次对 RDD 进行转换(Transformation)操作,我们都会得到一个新的 RDD。例如,rdd2 = rdd1.map(func)。那么,前后的 RDD 自然就形成了某种联系,即新生成的 child RDD 会依赖旧的 parent RDD。而这其中的问题,实际上就是新生成的 RDD 的分区如何依赖 parent RDD 的分区。

对于某些一元操作,比如 map()filter() 等,child RDD 的各个分区分别只依赖 parent RDD 中的各个分区,是一一映射的关系。而对于某些聚合操作,比如reduceByKey()groupByKey() 等,在计算的时候需要对 parent RDD 的各个分区进行计算,child RDD 的各个分区可能都只依赖 parent RDD 各个分区中的一部分,是多对一映射的关系。所以,Spark 所做的就是抽象出可以通用的方法,来处理各种情况的依赖。

目前,Spark 将这些依赖关系分为两大类:宽依赖(ShuffleDependency)和窄依赖(NarrowDependency)。

窄依赖 NarrowDependency

在官方文档中 API-NarrowDependency,窄依赖的描述为:

Base class for dependencies where each partition of the child RDD depends on a small number of partitions of the parent RDD. Narrow dependencies allow for pipelined execution.

即 child RDD 中的每个分区都依赖 parent RDD 中的一小部分分区。那么如何理解这句话呢,我们首先来看下面这张图。

1-NarrowDependency

本图囊括了有关窄依赖的各种依赖情况,我们一一来看。

  • OneToOneDependency:一对一依赖。从图中我们可以看出,child RDD 中的每个分区都只依赖 parent RDD 中的一个分区,并且 child RDD 的分区数和 parent RDD 的分区数相同。这种我们称之为 OneToOneDependency。属于这种依赖关系的转换算子有 map()flatMap()filter() 等。通过阅读 Spark 源码,我们可以发现,这些算子生成的 RDD 的依赖关系使用的就是 OneToOneDependency 这个类。

    /**
     * :: DeveloperApi ::
     * Represents a one-to-one dependency between partitions of the parent and child RDDs.
     */
    @DeveloperApi
    class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
      override def getParents(partitionId: Int): List[Int] = List(partitionId)
    }
    
  • RangeDependency:范围依赖。child RDD 和 parent RDD 的分区经过划分,每个范围内的父子 RDD 的分区都为一一对应的关系。属于这种依赖关系的转换算子有 union() 等。通过阅读源码,我们可以看到,在 UnionRDDgetDependencies() 方法中,创建了一个 RangeDependency 类。

    override def getDependencies: Seq[Dependency[_]] = {
        val deps = new ArrayBuffer[Dependency[_]]
        var pos = 0
        for (rdd <- rdds) {
          deps += new RangeDependency(rdd, 0, pos, rdd.partitions.length)
          pos += rdd.partitions.length
        }
        deps
    }
    
    /**
     * :: DeveloperApi ::
     * Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs.
     * @param rdd the parent RDD
     * @param inStart the start of the range in the parent RDD
     * @param outStart the start of the range in the child RDD
     * @param length the length of the range
     */
    @DeveloperApi
    class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int)
      extends NarrowDependency[T](rdd) {
    
      override def getParents(partitionId: Int): List[Int] = {
        if (partitionId >= outStart && partitionId < outStart + length) {
          List(partitionId - outStart + inStart)
        } else {
          Nil
        }
      }
    }
    
  • NarrowDependency: 窄依赖类。通过代码我们可以发现,上面的 OneToOneDependencyRangeDependency 都继承了 NarrowDependency 这个类。现在我们来看下上图的下半部分。

    • 左边我们可以看作是多对一的依赖,属于这种依赖关系的转换算子有特殊情形的 join()cogroup() 等。为什么说特殊情形呢,用 cogroup() 举例。cogroup() 可以聚合多个 RDD,其中如果某些 parent RDD 和 child RDD 的 partitioner 和分区数相同(比如,都为 HashPartitioner),那么这些 parent RDD 的分区就可以直接流入到 child RDD 的对应分区中,为 OneToOneDependency 情形。而其它不符合这种条件的分区,则为 ShuffleDependency

    • 右边我们可以看做是多对多的依赖,属于这种依赖关系的转换算子有 cartesian()。可能大家一不注意就把这种情形当成是 ShuffleDependency 了,但通过源码我们可以发现,CartesianRDD 中创建了两个 NarrowDependency 完成了笛卡尔乘积操作,属于窄依赖。

      override def getDependencies: Seq[Dependency[_]] = List(
         new NarrowDependency(rdd1) {
           def getParents(id: Int): Seq[Int] = List(id / numPartitionsInRdd2)
         },
         new NarrowDependency(rdd2) {
           def getParents(id: Int): Seq[Int] = List(id % numPartitionsInRdd2)
         }
      )
      

宽依赖 ShuffleDependency

接下来我们再来看宽依赖。在官方文档中 API-ShuffleDependency,宽依赖的描述为:

Represents a dependency on the output of a shuffle stage. Note that in the case of shuffle, the RDD is transient since we don’t need it on the executor side.

官方这里并没有从 RDD 分区角度来解释什么是 ShuffleDependency ,只是说需要 shuffle 的两个 Stage 的依赖。那到底什么是 ShuffleDependency 呢?我们来看下图。

看到这可能有的同学会说,这不和 NarrowDependency 一样么?仔细看,NarrowDependency 虽然也有 child RDD 的一个分区依赖 parent RDD 的多个分区的情况,但都是依赖分区的全部。而 ShuffleDependency 中,child RDD 的一个分区依赖的是 parent RDD 中各个分区的某一部分。如上图左半部分,child RDD 的两个分区分别只依赖 parent RDD 中的 1 和 2 部分。而计算出 1 或者 2 部分的过程,以及 child RDD 分别读取 1 和 2 的过程,即为 shuffle write/shuffle read,这个过程正是 shuffle 开销所在。

总结

简单来说,NarrowDependency 为 parent RDD 的一个或多个分区的数据全部流入到 child RDD 的一个或多个分区,而 ShuffleDependency 则为 parent RDD 的每个分区的每一部分,分别流入到 child RDD 的不同分区。

Spark 之所以要将依赖关系分为 NarrowDependencyShuffleDependency ,是可以更好的将各种依赖类型进行分类,明确数据怎么流出流入,从而更容易生成对应的物理执行计划。NarrowDependency 不需要 shuffle 操作,并且可以用于流式操作(pipeline)。ShuffleDependency 则需要进行 shuffle 操作,有 shuffle 的地方需要划分不同的 stage。

以上就是有关 Spark 中 NarrowDependencyShuffleDependency 的介绍。


我是因特马,一个爱分享的斜杠程序员~

欢迎关注我的公众号:因特马

同名作者: 因特马
原文链接: https://www.interhorse.cn/a/2301943088/
版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

&lt;think&gt;好的,我现在需要帮助用户理解Spark中的依赖窄依赖的区别及其工作原理。首先,我得回忆一下自己关于Spark的知识,尤其是RDD依赖关系的部分。 用户给出的问题很明确,他们想了解依赖窄依赖的概念及区别,还有它们的工作原理。根据提供的引用资料,我需要将这些信息整合起来,用清晰的中文回答,同时遵循格式要求,比如行内数学表达式用$...$,独立公式用$$...$$,虽然目前可能用不上数学公式,但如果有相关例子可能需要考虑。不过,这个问题可能主要涉及概念性的内容,不太涉及数学表达式,但需要保持结构清晰。 首先,我应该从基本定义入手。根据引用[1],窄依赖是RDD依赖的两种类型。窄依赖指的是父RDD的每个分区最多被一个子RDD分区使用,而依赖则是父RDD的分区被多个子RDD分区使用。这点需要明确说明。 接下来,引用[3]提到,DAGScheduler根据窄依赖划分stage,依赖会划分stage,而窄依赖则不会,这涉及到任务执行的优化,比如流水线处理。这里需要解释为什么依赖会导致stage划分,可能因为需要shuffle操作,导致数据重新分布,必须等待前面的任务完成才能进行下一步。 然后,引用[4]列举了窄依赖的一些操作,比如map、filter、union等,而依赖的例子包括groupByKey、join(非哈希分区的父RDD)、reduceByKey等。这些例子有助于用户理解具体哪些转换操作会导致哪种依赖。 区别部分需要分点列出,比如数据分布、性能影响、容错恢复stage划分。例如,窄依赖允许流水线优化,数据在同一个节点处理,而依赖需要shuffle,网络传输多,性能较低。容错方面,窄依赖恢复快,依赖则需要重新计算多个父分区。 工作原理方面,需要结合stage划分DAG调度。任务执行时,依赖作为stage的分界点,每个stage内部是窄依赖,可以并行执行,而依赖需要等待前面stage完成。这影响了任务的执行效率容错机制。 可能还需要提到窄依赖Spark程序优化的影响,如引用[2]所说,正确识别这些依赖有助于设计高效的程序,比如减少shuffle操作,尽量使用窄依赖来提升性能。 现在要检查是否有遗漏的信息,或者是否需要进一步澄清某些点。例如,是否要解释为什么join有时候是窄依赖,有时候是依赖,根据父RDD是否已经哈希分区,这点引用[4]提到过,所以需要说明不同情况下的区别。 最后,生成相关问题,可能需要围绕应用场景、优化方法、性能影响等方面提问,确保用户能进一步探索相关内容。 在组织回答时,要确保结构清晰,分点说明,使用用户提供的引用标注,比如在说明stage划分时引用[3],在列举操作时引用[4]等。同时,注意使用正确的格式,比如代码块用反引号,问题部分用&sect;&sect;符号分隔。 现在,我需要将这些思考整理成一个自然流畅的回答,确保符合用户的要求,并且正确引用提供的资料。可能还需要检查是否有技术错误,比如窄依赖的准确定义,以及例子是否正确,避免误导用户。&lt;/think&gt;### Spark依赖窄依赖的区别及工作原理 #### 1. **基本概念** - **窄依赖(Narrow Dependency)** 父RDD的每个分区最多被一个子RDD分区引用,数据不需要跨节点传输。例如`map`、`filter`等操作[^4]。 $$ \text{父分区} \rightarrow \text{唯一子分区} $$ - **依赖(Shuffle依赖/Wide Dependency)** 父RDD的每个分区可能被多个子RDD分区引用,需要跨节点传输数据(Shuffle)。例如`groupByKey`、非哈希分区的`join`[^3][^4]。 $$ \text{父分区} \rightarrow \text{多个子分区} $$ #### 2. **核心区别** | 特性 | 窄依赖 | 依赖 | |---------------------|----------------------------|---------------------------------| | **数据分布** | 数据局部处理,无需Shuffle | 需Shuffle,数据重新分配[^1] | | **性能影响** | 支持流水线优化,高效执行 | 网络传输开销大,性能较低[^2] | | **容错恢复** | 仅需重新计算单个父分区 | 需重新计算多个父分区[^3] | | **Stage划分依据** | 不触发Stage划分 | 触发Stage分界点(DAG调度) | #### 3. **工作原理** - **Stage划分** Spark根据依赖将DAG划分为多个Stage,每个Stage内部仅包含窄依赖,可并行执行。依赖作为Stage边界,需等待前驱Stage完成后才能执行。 - **执行优化** 窄依赖支持流水线优化(如`map`后直接`filter`),而依赖需等待Shuffle完成[^1]。 #### 4. **示例说明** - **窄依赖操作** ```python rdd = sc.parallelize([1,2,3]) mapped = rdd.map(lambda x: x*2) # 窄依赖 ``` 父RDD的每个分区数据直接映射到子分区。 - **依赖操作** ```python grouped = rdd.groupByKey() # 依赖(需Shuffle) ``` 数据需按Key重新分布到不同节点。 #### 5. **应用影响** - 减少依赖可优化性能(如用`reduceByKey`替代`groupByKey`)。 - 窄依赖利于快速容错恢复,依赖需冗余存储或检查点机制。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值