给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
3 2
1 2 5 6
2 3 4 5
1 3
0 0
9 11
最短路(dijkstra算法)相比于模板这道题需要建立一个计算花费的二维数组me[i][j]与储存路劲的map[i][j]对应表示i到j所需要的花费,用sum[i]来储存当前到i所要用的最小的花费
这样的话花费的状态转移方程为:
if(minload[i]==map[start][i]+minload[start])//题目要求路线优先考虑
sump[i]=min(sum[i],sum[start]+me[start][i])
最短路径的思路可以用到求最小花费
需要注意的是路径重复时候需要选择路径短的在改变路径短的时候花费也要改变
1->2 距离是3 费用是2
2->1 距离是1 费用是5
要取距离1 费用5
1->2 距离是3 费用是2
2->1 距离是3 费用是5
要取距离3 费用2(discuss里面的测试样例) |
|
#include <stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define inf 9999999
int minload[1001],map[1001][1001],visit[1001];
int me[1001][1001];
int sum[1001];
using namespace std;
int main(int argc, char *argv[])
{
int i,j,m,n;
while(scanf("%d %d",&n,&m),n+m)
{
for(i=1;i<=n;i++)
{
minload[i]=inf;
sum[i]=inf;
visit[i]=1;
for(j=1;j<=n;j++)
{
map[i][j]=inf;
me[i][j]=inf;
}
}
int a,d,b,p;
for(i=0;i<m;i++)
{
scanf("%d %d %d %d",&a,&b,&d,&p);
if(map[a][b]>d)
{
map[a][b]=map[b][a]=d;
me[a][b]=me[b][a]=p;
}
if(map[a][b]==d&&me[a][b]>p)
{
me[a][b]=me[b][a]=p;
}
}
int chun,start,target;
scanf("%d %d",&start,&target);
minload[start]=0;
sum[start]=0;
while(start!=target)
{
int min1=inf;
for(i=1;i<=n;i++)
{
if(map[start][i]!=inf)
{
if(minload[i]>map[start][i]+minload[start])
{
minload[i]=map[start][i]+minload[start];
sum[i]=sum[start]+me[start][i];
}
if(minload[i]==map[start][i]+minload[start])
{
sum[i]=min(sum[i],sum[start]+me[start][i]);
}
}
if(visit[i]&&min1>minload[i])
{
chun=i;
min1=minload[i];
}
}
visit[chun]=0;
start=chun;
}
printf("%d %d\n",minload[target],sum[target]);
}
return 0;
}