【自制演示代码】Basic Operations on a Binary Min-Heap

本文介绍了二叉最小堆的基本属性,如结构和堆序,以及在C语言中实现的插入、删除最小值等操作。代码展示了如何使用堆对输入序列进行排序,同时提供了注意事项和函数定义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Properties of a Binary Min-Heap

1. Structure Property

A binary min-heap has to be a complete binary tree.

2. Heap Order Property

The value of any node in a binary min-heap has to be no greater than its two children's values(if exists).

Operations Included in the Code

In the following code, you will see the operations below:

- BuildHeap

- PercolateDown

- PercolateUp

- Insert

- DeleteMin

- PrintHeap

Also, you will see the simple typedef of:

- Heap

Notes and Declarations

The code will sort the input sequence with a heap.

The language used is C.

The purpose of posting this code online is to make a quick note of my studying progress.

For students at school, DO NOT copy this code into your homework or projects. Otherwise, I will not be responsible for any punishments because of

### Buddy Algorithm Implementation and Explanation In computer science, the buddy memory allocation method is a technique used by various operating systems to allocate memory blocks of size \(2^n\) (where n is an integer). This approach ensures that fragmentation remains low while providing efficient memory management. #### Key Concepts Memory allocated using this system must be in powers of two. When allocating or freeing space, buddies are paired together based on their sizes until no more pairs can be made within available segments[^1]. #### Implementation Details To implement the buddy algorithm effectively: - A binary tree structure represents all possible block divisions. - Each node corresponds to one potential division point between two equal-sized areas. - The root starts as the entire addressable range; children represent halves recursively divided down through leaves representing individual units at minimum granularity supported by hardware architecture. Here’s how such logic might look implemented programmatically with Python code demonstrating core functionality without specific optimizations typically found in production environments: ```python class Block: def __init__(self, start, end): self.start = start self.end = end self.buddy = None self.is_free = True def find_buddy(block, heap_size): current_level_bits = int.bit_length(heap_size) - 1 diff = abs((block.end - block.start + 1) // 2) if block.start % (diff * 2) == 0: return Block(block.start + diff, min(block.end, block.start + (diff * 2) - 1)) else: return Block(max(0, block.start - diff), block.start - 1) def split_block(parent_block): mid_point = parent_block.start + ((parent_block.end - parent_block.start) // 2) first_child = Block(parent_block.start, mid_point) second_child = Block(mid_point + 1, parent_block.end) first_child.buddy = second_child second_child.buddy = first_child return [first_child, second_child] heap_memory = [] allocated_blocks = {} free_list = [] # Initialize free list with single large chunk covering full 'virtual' heap area initial_heap_chunk = Block(0, pow(2, 20)) # Example for 1MB total virtual heap size free_list.append(initial_heap_chunk) def malloc(size): required_power_of_two = 1 << (size - 1).bit_length() suitable_block_index = next( ( i for i, b in enumerate(free_list) if not b.is_free or (b.end - b.start + 1 >= required_power_of_two) ), None, ) if suitable_block_index is None: raise MemoryError("Out of memory") selected_block = free_list.pop(suitable_block_index) remaining_space_after_allocation = selected_block.end - selected_block.start + 1 - required_power_of_two new_allocated_block = Block(selected_block.start, selected_block.start + required_power_of_two - 1) new_allocated_block.is_free = False if remaining_space_after_allocation > 0: leftover_piece = Block(new_allocated_block.end + 1, selected_block.end) leftover_piece.is_free = True free_list.append(leftover_piece) allocated_blocks[id(new_allocated_block)] = new_allocated_block return id(new_allocated_block) def free(ptr_id): target_block = allocated_blocks.get(ptr_id) if target_block is None or not target_block.is_free: raise ValueError('Invalid pointer') del allocated_blocks[ptr_id] target_block.is_free = True merge_with_buddies(target_block) def merge_with_buddies(current_block): global free_list while current_block.buddy and current_block.buddy.is_free: merged_start = min(current_block.start, current_block.buddy.start) merged_end = max(current_block.end, current_block.buddy.end) combined_block = Block(merged_start, merged_end) free_list.remove(current_block) free_list.remove(current_block.buddy) current_block = combined_block free_list.append(combined_block) break # Only attempt merging once per call due to changing state during iteration over `free_list` ``` This example demonstrates basic operations like splitting larger chunks into smaller ones when needed (`split_block` function) and joining adjacent freed regions back together whenever feasible (`merge_with_buddies`). It also includes simplified versions of common functions seen in real-world implementations—such as those responsible for requesting (`malloc`) and releasing (`free`) portions from/to managed storage pools.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值