目录
1. “导数(derivative)”名称的由来
1.1 “derivative”的词源
作为名词,始于15世纪中期,词义为“a derived word or form, a word formed immediately or remotely from another or a root (派生词或派生形式,直接或者由另一个词或词根组成的词)”,由形容司“derivative (派生的)”转化而来。常用词义“that which is derived or deduced from another(由另一个事物派生或演绎而来的事物)”始于1590年代,其数学意义“a derivative(derived) function (导数函数)”始于1670年代。
1.2 “derivative”的数学意义来源
Newton(牛顿)将“derivative”称为“Fluxion(流数)”,即流(flow): f′是“流动的(fluent)”(即“流动的功变化的量”)函数f (牛顿用点号(.)代替上撇号(′)( primes);上撇号(′)( primes)是由拉格朗日(Lagrange)在18世纪末引入的)的“流数(fluxion)”。但是随着莱布尼茨的符号和他基于微分(differentials)的方法被普遍采用,牛顿的这个方便的术语就被废弃了。
函数导数的传统名称曾经称为“微分系数(Differential Coefficient)”。之所以使用这个名称是因为当我们将等式写作df(x)=f′(x)dx时f′(x)是dx(微分)的系数。事实上,在18世比和19世纪早期,数学家们对无穷小微分比微分系数更感兴趣。
然而,随着分析变得越来越严谨,注意力转向了导数f′而不是微分f′(x)dx。认识到,函数导数f′是由函数“导出的、衍生出的、演绎出的、推导出的、等等(derived)”,在语法意义上,名词的复数形式是派生于名词的单数形式。在拉丁语中,动词“dērīvāre”词义为“to lead or draw off (water or liquid), to divert, derive (words)(引导或脱去(水或液体),转移、派生(词汇))”,可以解析为由前缀“dē”(词义为“from(来自)”)+“rīvus”(词义为“brook, stream of water(小溪、水流)”)构成。这就是对于函数导数f′“导数函数(derived function)”或者“导数(derivative)”的源头。
尽管“derive”流行用于表示导数计算的动词,大部分数学家喜欢用“微分(differentiate)”表示,例如:
“针对x微分, 你将会得到相同的函数。”
1.3 “derivative”中文翻译为“导数”
根据前面的叙述,函数导数f′ 是由函数“派生出的,导出的,衍生出的,演绎出的,推导出的,等等(derived)”的意义,中文将其翻译为“导出函数(derivative function)”或“派生函数(derived function)”,简称“导数”。
2. “导数(derivative)”的数学意义
函数的导数的定义为
假如函数f(x)对于所有定义域上的x,其极限都存在,则函数在x点的导数的定义为:
=
应该认识到,x的函数的导数也是x的函数,这个“新产生”的函数给出了对于任意点(x,f(x))的f函数图形上的切线斜率(slope)(假如函数图形在这一点处有切线)。这个导数也可以用于确定一个变量针对别一个变量的“变化的瞬时率”(或简称“变化率”)。
因此,从定义上可以看出,导数的确切数学含义为“当函数在任意某点x的变化(即Δx无限接近0时)无限趋近于0时,函数在这一点x的变化值与其自变量的相应变化值之比的极限值”,简单地说,就是函数导数是任意某点x“变化率的极限值”的表达式(注:将“导数”说成是“微商”是不严谨的),从而,只要给定这一点的具体值,就能用导数函数算出这个变个点的变化率,导数函数是这种变化率的通用表达式。
导数除了记为, 最常用的记法还有
,
,
,
记法dy/dx读作“y针对x的导数”,或简单读为“dy,dx”,使用极限记法,可以写作:
参考资料:
1. 网络资源
2. <<calculus>> Ron Larson,The Pennsylvania State University The Behrend College
Bruce Edwards, University of Florida