微积分——函数导数不存在的几种典型情况

函数无导数的几种典型情况:

目录

1. 存在角点(corners),或者尖点(cusps)。

2. 存在垂直切线(vertical corners)。

3. 存在不连续点(discontinuties)。

4. 具有无限多振荡的连续函数。


1. 存在角点(corners),或者尖点(cusps)。

根据导数的定义,在角点或尖点处左右极限不相等,无法定义导数,故导数不存在。如下图1,图2所示:

----------------------图1 函数y = |x|在x = 0点存在角点----------------------------

----------------------图2 函数 y=\sqrt[3]{x^{2}} 在x = 0点存在尖点-------------------------

2. 存在垂直切线(vertical corners)。

存在垂直直线,函数无变化率,根据定义,不存在导数。如下图3所示:

----------------------图3 函数 y=\sqrt[3]{x} 在x = 0点存在垂直切线------------------------

3. 存在不连续点(discontinuties)。

不连续点处,没法定义导数。如下图所示:

----------------------图4 函数 y=\frac{x-2}{x-2} 在x = 0点无定义,不连续----------------

----------------------图5 函数 y=\frac{1}{x} 在x = 0点无定义,不连续-----------------------

----------------图6 函数 y=\frac{sin(x)}{x} 在x = 0点无定义,被移除------------------

----------------图7 函数 y=\frac{x}{|x|} 在x = 0点无定义,被移除,图形跳跃--------------

----------------图8 函数 y = \frac{1}{|x|} 在x = 0点无定义--------------------------------------

4. 具有无限多振荡的连续函数。

例如,

f(x)=\left \{ \begin{array}{lr} x\sin{\frac{1}{x}}(if \:\: x \ne 0) \\ \\ 0(if \:\:x=0) \end{array} \right . 。

我们可以将函数写成 

\displaystyle f(x) = \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \frac{\sin{\theta}}{\theta} (变量替换)。我们知道, \displaystyle \lim_{\theta \rightarrow 0} {\frac{\sin{\theta}}{\theta}} =1 , \displaystyle \lim_{\theta \rightarrow \infty} {\frac{\sin{\theta}}{\theta}} =0 。因此,函数 f (x) 当 x ⟶ 0 极限为0 ,而 x = 0 时函数为 0,当 x ⟶∞ 极限为 1 。根据函数连续性判别法,函数处处连续, 但 f (x) 对于所有 x ≠ 0 不可微(由导数的定义即可推出)。如下图所示:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值