深度学习推荐系统实战:基于协同过滤的招聘岗位双推荐算法

引言:为什么需要招聘推荐系统?

        在当今数字化招聘时代,求职者和招聘方都面临着信息过载的问题。求职者需要从海量岗位中找到最适合自己的,而HR则需要从众多简历中筛选出最匹配的候选人。传统的关键词匹配方式已经无法满足精准推荐的需求,这时基于协同过滤的深度学习推荐系统就能大显身手了。

        本文将带你从零实现一个基于协同过滤的招聘岗位双推荐系统,既能给求职者推荐合适岗位,也能给HR推荐合适候选人。我们将使用Python和深度学习框架TensorFlow,结合真实数据集进行实战。

一、协同过滤推荐算法基础

1.1 什么是协同过滤?

协同过滤(Collaborative Filtering)是推荐系统中最经典、最成功的算法之一。它的核心思想是:

"相似的用户会对物品表现出相似的偏好"

在招聘场景中:

  • 用户:求职者或企业HR

  • 物品:工作岗位或候选人简历

1.2 协同过滤的两种实现方式

  1. 基于用户的协同过滤(UserCF):找到与目标用户相似的用户,将这些相似用户喜欢的物品推荐给目标用户

  2. 基于物品的协同过滤(ItemCF):找到与目标物品相似的物品,将这些相似物品推荐给目标用户

在招聘场景中,我们将同时使用这两种方式,实现"双推荐"。

1.3 矩阵分解(MF)模型

矩阵分解是协同过滤的经典实现方式,它将用户-物品交互矩阵分解为用户隐向量矩阵和物品隐向量矩阵。

用户-物品矩阵 ≈ 用户隐向量矩阵 × 物品隐向量矩阵^T

二、实战准备

2.1 环境配置

# 所需库
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

2.2 数据集准备

我们使用公开的招聘数据集,包含:

  • 用户(求职者)信息

  • 岗位信息

  • 用户对岗位的交互数据(浏览、收藏、申请等)

# 加载数据集
user_df = pd.read_csv('user_data.csv')  # 用户信息
job_df = pd.read_csv('job_data.csv')    # 岗位信息
interaction_df = pd.read_csv('interaction.csv')  # 交互数据

# 查看数据
print(user_df.head())
print(job_df.head())
print(interaction_df.head())

三、数据预处理

3.1 数据清洗

# 处理缺失值
user_df.fillna({'education': '未知'}, inplace=True)
job_df.fillna({'company_size': '未知'}, inplace=True)

# 转换分类变量
user_df['education'] = user_df['education'].astype('category').cat.codes
job_df['company_size'] = job_df['company_size'].astype('category').cat.codes

# 交互数据处理:将不同类型的交互赋予不同权重
interaction_weights = {
    'view': 1,
    'save': 3,
    'apply': 5
}
interaction_df['weight&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值