目录
2.1 Neurosymbolic Transformer架构
一、认知科学的终极蓝图:统一连接主义与符号主义
1.1 神经符号逻辑的整合形式化表达
混合推理框架:
其中为中间符号表示,
为一阶逻辑约束
# 神经符号层PyTorch实现
class NeuroSymbolicLayer(nn.Module):
def __init__(self, dim, logic_rules):
super().__init__()
self.fc = nn.Linear(dim, dim)
self.logic_rules = logic_rules # 逻辑规则集合
def forward(self, x):
# 神经网络变换
h = torch.relu(self.fc(x))
# 符号逻辑约束注入
for rule in self.logic_rules:
h = rule.apply(h) # 应用逻辑约束
return h
# 示例:医疗诊断中的因果约束
class CausalConstraint:
def apply(self, logits):
# 确保"癌症"标签出现时必须有"吸烟史"
cancer_mask = (logits[:, 7] > 0).float() # 第7维是癌症
smoke_penalty = F.relu(-logits[:, 3]) * cancer_mask # 第3维是吸烟史
return logits - 10 * smoke_penalty.unsqueeze(1)
1.2 概率推理的微分实现
马尔可夫逻辑网络的深度学习变体:
连续松弛技术: