【人工智能数学基础】——李群与机器学习:对称性引导的特征学习革命

目录

🌟 前言:李群——AI世界的"对称性语法"

一、李群的数学基石:连续对称性的微分几何

1.1 李群与李代数的对应关系

1.2 群作用与等变性

二、李群实战:旋转等变的图像分类

2.1 基于E2CNN的等变网络实现

2.2 等变网络性能对比

 三、李群深度学习的现代进化

3.1 李群Transformer架构

3.2 李群生成模型

四、李群改变现实的五大领域

4.1 量子化学模拟

4.2 自动驾驶感知

4.3 蛋白质设计

五、李群深度学习的未来边界

5.1 无限维李群表示

5.2 量子李群学习

🌌 结语:李群——在对称性宇宙中编织智能的经纬

📚 扩展阅读:

🔧 实战建议:


🌟 前言:李群——AI世界的"对称性语法"

晶体学家通过空间群分类物质结构,李群理论通过连续对称性解析数据本质。这个源自19世纪Sophus Lie的数学理论,以"无穷小生成元"的哲学重塑了几何深度学习的范式。本文将带您深入李代数的微分结构,用代码重现等变特征的提取奇迹,揭示如何通过指数映射在数据流形上构建对称性的导航罗盘。


一、李群的数学基石:连续对称性的微分几何

1.1 李群与李代数的对应关系

李群定义
光滑流形+群结构,满足乘法和逆运算的光滑性
\forall g, h \in G, \ (g, h) \mapsto gh^{-1} 光滑

李代数结构
[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}满足雅可比恒等式

指数映射
\exp: \mathfrak{g} \rightarrow G将无穷小生成元转换为有限变换

1.2 群作用与等变性

群作用定义
\rho: G \times X \rightarrow X\rho(gh, x) = \rho(g, \rho(h, x))

等变层设计
f(\rho_V(g)x) = \rho_W(g)f(x) \quad \forall g \in G


二、李群实战:旋转等变的图像分类

2.1 基于E2CNN的等变网络实现

import torch
import e2cnn.nn as enn

# 定义SE(2)群作用(旋转+平移)
group = e2cnn.groups.SE2G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值