目录
一、人工智能的本质追问与技术溯源
1.1 哲学源流:智能的本质之争
-
笛卡尔的机械论(17世纪):首次提出生物体可作为机械装置理解的哲学假设
-
莱布尼茨的符号系统(1679):《二进制算术》奠定符号逻辑的数学基础
-
图灵的可计算理论(1936):提出通用计算机理论模型,确立算法可计算性边界
1.2 学科奠基:达特茅斯会议(1956)
会议确立了AI研究的五大核心方向:
-
自动计算机
-
编程语言
-
神经网络
-
计算规模理论
-
自我改进
二、人工智能三大技术范式对比
通过对比表格揭示不同学派的核心差异:
维度 | 符号主义 | 连接主义 | 行为主义 |
---|---|---|---|
理论基础 | 数理逻辑 | 神经生物学 | 控制论 |
知识表示 | 显式规则 | 分布式表征 | 行为策略 |
学习方式 | 演绎推理 | 参数优化 | 试错反馈 |
典型应用 | 专家系统 | 图像识别 | 机器人控制 |
优势领域 | 可解释性 | 模式识别 | 动态适应 |
代表系统 | IBM沃森 | ResNet | Boston Atlas |
三、机器学习技术体系详解
3.1 机器学习分类图谱
3.2 监督学习的工业级应用
-
金融风控:基于用户画像的信用评分模型
-
医疗诊断:X光片的肿瘤识别(准确率超95%)
-
智能推荐:Netflix的个性化推荐系统(节省10亿美元/年)