目录
一、物体检测技术体系全景图
二、YOLO系列技术演进深度解析
2.1 YOLOv1-v3核心突破
YOLOv1奠基性设计:
-
将检测转化为回归问题
-
7×7网格划分策略
-
端到端训练框架
YOLOv2关键改进:
-
Anchor机制:5种预定义锚框(K-means聚类)
-
多尺度训练:320×320到608×608动态调整
-
细粒度特征:Passthrough层融合浅层特征
YOLOv3里程碑升级:
-
特征金字塔网络(FPN)
-
Darknet-53主干网络
-
多标签分类机制
# YOLOv3特征金字塔实现
def darknet53(inputs):
# 下采样路径
x = darknet_block(inputs, 32)
x = darknet_block(x, 64, downsample=True)
x = darknet_block(x, 128, downsample=True)
route1 = x
x = darknet_block(x, 256, downsample=True)
route2 = x
x = darknet_block(x, 512, downsample=True)
route3 = x
# 上采样路径
x = upsample_block(route3)
x = Concatenate()([x, route2])
output1 = detection_block(x)
x = upsample_block(output1)
x = Concatenate()([x, route1])
output2 = detection_block(x)
return [output1, output2, route3]
2.2 YOLOv4-v7创新突破
YOLOv4核心技术:
-
CSPDarknet53:跨阶段局部网络
-
Mosaic数据增强:4图拼接训练
-
CIoU Loss:完整交并比优化
YOLOv5工程优化:
-
自适应锚框计算
-
混合精度训练支持
-
超参数进化算法
YOLOv6工业级改进:
-
RepVGG式重参数化
-
Anchor-free检测头
-
SIoU边界框回归
# YOLOv5模型定义核心代码
class YOLOv5(nn.Module):
def __init__(self):
super().__init__()
# 主干网络
self.backbone = CSPDarknet()
# 颈部网络
self.neck = PANet()
# 检测头
self.head = Detect()
def forward(self, x):
x = self.backbone(x)
x = self.neck(x)
return self.head(x)