一、LRU简介
LRU(Least Resently Used,最近最久未使用)算法是一种缓存淘汰策略。
对于计算机来说,缓存容量是有限的,当缓存满了时就要用到LRU,对于很久没有用过的数据,我们可以将其判定为无用的数据,当新资源进入缓存或者用到了某个数据的时候,对应的资源可以判定为有用的数据,当缓存满了时我们应当优先淘汰无用的数据,而对于最近使用过的数据应当靠后淘汰,这就是LRU算法。
LRU算法也是面试时经常考察的算法题,见LeetCode146. LRU缓存,题目要求如下:
二、思路解析
在LRU缓存算法中,采用了一种有趣的数据结构——哈希链表,即HashMap+双向链表。这样一来,原本无序的哈希表就拥有了固定的排列顺序。
让我们以用户信息的需求为例,来演示一下LRU算法的基本思路:
1. 假设使用哈希链表来缓存用户信息,目前缓存了4个用户,这4个用户是按照被访问的时间顺序依次从链表右端插入的。
2. 如果这时业务方访问用户5,由于哈希链表中没有用户5的数据,需要从数据库中读取出来,插入到缓存中。此时,链表最右端是最新被访问的用户5,最左端是最近最少被访问的用户1。
3. 接下来,如果业务方访问用户2,哈希链表中已经存在用户2的数据,这时我们把用户2从它的前驱节点和后继节点之间移除,重新插入链表的最右端。此时,链表的最右端变成了最新被访问的用户2,最左端仍然是最近最少被访问的用户1。
4. 接下来,如果业务方请求修改用户4的信息。同样的道理,我们会把用户4从原来的位置移动到链表的最右侧,并把用户信息的值更新。这时,链表的最右端是最新被访问的用户4,最左端仍然是最近最少被访问的用户1。
5. 后来业务方又要访问用户6,用户6在缓存里没有,需要插入哈希链表中。假设这时缓存容量已经达到上限,必须先删除最近最少被访问的数据,那么位于哈希链表最左端的用户1就会被删除,然后再把用户6插入最右端的位置。
这就是LRU算法的基本思路。
三、具体代码
LeetCode的官方C++