ZOJ3856 Goldbach[FFT]

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ControlBear/article/details/74784245



题意:

给出一个x,问至多用3个素数,以乘法和加法组合起来,能有多少种方法得到x。

因为不会使用括号,所以只有 a、a+b、a*b、a+b+c、a*b+c、a*b*c


题解:

首先,根据题意,只有小于等于80000的全部素数才能构成结果,那么我们只需要先打表出这个素数表。

打表的过程中,我们就可以先处理出结果本身就是素数和当前素数*3得到的值(即a+a+a三个相同的素数相加)的方案数+1。

ans[i]=ans[i]+1   ans[i*3]=ans[i*3]+1;


先说带有乘法或者只有乘法的方案数计算。

①a*b

直接暴力枚举 1到cnt(小于等于80000的素数的个数) 内的素数相乘,枚举的b必须大于或者等于a,避免重复计数,并且必须保证a*b不大于80000。因为a*b不能大于80000,那么我们枚举过程中,将a的范围缩小为不超过sqrt(80000)。

ans[a*b]=ans[a*b]+1

②a*b+c

根据上面的枚举结果,得到所有的a*b的结果,列为多项式,跟另外一个多项式(所有小于等于80000的素数)做一次多项式相乘,得到a*b+c的所有结果,再保存到ans[i]里面。

ans[i]=ans[i]+res[i]   res[i]为当前多项式计算结果

③a*b*c

直接暴力枚举符合情况,枚举过程中,b不能小于a,c不能小于b即可,就能得到所有结果。

ans[a*b*c]=ans[a*b*c]+1


再说只有加法的方案数计算

①a+b

这个只要直接用小于等于80000的素数的多项式相互相乘,去掉不同的两个数相加的时候的重复计算就可以得到最后的答案。

ans[i]=ans[i]+res[i]  res[i]为当前多项式计算结果

②a+b+c

这个的去重,就比较麻烦了。单独从a+b来说,我们只需要去掉因为顺序不同的重复计算,即使 2+3、3+2这样的情况。

a+b+c如果 a、b、c取值都不一样的话,那么会有三种情况 a+b+c、a+c+b、b+c+a 要得到结果我们只需要将这个方案数/3即可

而 2+2+3、2+3+2这样的情况就比较尴尬了,其中有两个数是相等的情况下,最终结果只会出现2次,那么如果是上述那样方案数/3会使得结果变少。

为了解决这个问题,我们直接去掉a+b结果中的相同的结果(即a==b的情况),才进行第二个加法的多项式相乘,得到的结果只会出现2+3+2。

为了弥补缺失的方案数,我们再做一次 2*a 跟 素数的多项式相乘的结果,我们可以得到所有的a+a+b的结果,而且只有一次,那么我们只要*2加上上面原来出现的一次,就达到三次了。

而三个数相等的计算,一开始我们就说了。所以这种情况的最后结果是

ans[i]=ans[i]+(res[i]+tmp[i]*2)/3   res[i]为三种取值不同和第一次加法时去掉相同的数相加的情况 tmp为2*a+b的结果


#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const double PI=acos(-1.0);
const int N=8e4+5;
const int M=1<<18;
const int mod=1e9+7;
bool mark[N];
int prim[N];
int cnt;
ll ans[N],res[M],tmp[M];
struct Complex
{
    double real,image;
    Complex(double r=0.0,double i=0.0):real(r),image(i){}
    Complex operator + (const Complex &b)
    {
        return Complex(real+b.real,image+b.image);
    }
    Complex operator - (const Complex &b)
    {
        return Complex (real-b.real,image-b.image);
    }
    Complex operator * (const Complex &b)
    {
        return Complex (real*b.real-image*b.image,image*b.real+real*b.image);
    }
}a[M],b[M];
void change(Complex x[],int len)
{
    for (int i=1,j=len/2 ; i<len-1 ; ++i)
    {
        if (i<j)
            swap(x[i],x[j]);
        int k=len/2;
        while (j>=k)
        {
            j-=k;
            k/=2;
        }
        if (j<k)
            j+=k;
    }
}
void FFT(Complex x[],int len,int dft)
{
    change(x,len);
    for (int h=2 ; h<=len ; h<<=1)
    {
        Complex wn(cos(2*PI*dft/h),sin(2*PI*dft/h));
        for (int j=0 ; j<len ; j+=h)
        {
            Complex w(1,0);
            for (int k=j ; k<j+h/2 ; ++k)
            {
                Complex u=x[k];
                Complex t=w*x[k+h/2];
                x[k]=u+t;
                x[k+h/2]=u-t;
                w=w*wn;
            }
        }
    }
    if (dft==-1)
    {
        for (int i=0 ; i<len ; ++i)
        {
            x[i].real/=len;
            x[i].image/=len;
        }
    }
}
void twomuladd(int len)//两个相乘之后加一个数的情况
{
    memset(res,0,sizeof(res));
    for (int i=0 ; i<cnt && prim[i]<=sqrt(N) ; ++i)//两个数相乘等于x
    {
        for (int j=i ; j<cnt ; ++j)
        {
            if ((ll)prim[i]*prim[j]>=(ll)N)
                break;
            res[prim[i]*prim[j]]++;
            ans[prim[i]*prim[j]]=(ans[prim[i]*prim[j]]+1)%mod;
        }
    }
    for (int i=0 ; i<len ; ++i)
    {
        if (i<N)
        {
            a[i]=Complex(res[i],0);
            b[i]=Complex(!mark[i],0);
        }
        else
            a[i]=b[i]=Complex(0,0);
    }

    FFT(a,len,1);
    FFT(b,len,1);
    for (int i=0 ; i<len ; ++i)
        a[i]=a[i]*b[i];
    FFT(a,len,-1);
    for (int i=0 ; i<len ; ++i)
        res[i]=(ll)(a[i].real+0.5);
    for (int i=0 ; i<N ; ++i)
        ans[i]=(ans[i]+res[i]%mod)%mod;
}
void threeadd(int len)//两个相加跟三个相加的情况(不包括三个相同的相加)
{
    for (int i=0 ; i<len ; ++i)
    {
        if (i<N)
            a[i]=b[i]=Complex(!mark[i],0);
        else
            a[i]=b[i]=Complex(0,0);
    }
    FFT(a,len,1);
    for (int i=0 ; i<len ; ++i)
        a[i]=a[i]*a[i];
    FFT(a,len,-1);
    for (int i=0 ; i<len ; ++i)//;两个相加
    {
        res[i]=(ll)(a[i].real+0.5);
        res[i]=res[i]&1?(res[i]+1)/2:res[i]/2;//去掉两个相加的时候的重复计算
    }
    for (int i=0 ; i<N ; ++i)
        ans[i]=(ans[i]+res[i]%mod)%mod;
    for (int i=0 ; i<len ; ++i)
        res[i]=(ll)(a[i].real+0.5);
    for (int i=0 ; i<cnt ; ++i)//去掉自身相加的结果
        res[prim[i]+prim[i]]--;
    for (int i=0 ; i<len ; ++i)//去掉两个相加的时候的重复计算
        res[i]/=2;
    for (int i=0 ; i<len ; ++i)
    {
        if (i<N)
            a[i]=Complex(res[i],0);
        else
            a[i]=Complex(0,0);
    }
    FFT(a,len,1);
    FFT(b,len,1);
    for (int i=0 ; i<len ; ++i)//三个相加
        a[i]=a[i]*b[i];
    FFT(a,len,-1);
    for (int i=0 ; i<len ; ++i)
        res[i]=(ll)(a[i].real+0.5);
    for (int i=0 ; i<len ; ++i)
    {
        if (i<N)
            a[i]=Complex(!mark[i],0);
        else
            a[i]=Complex(0,0);
        b[i]=Complex(0,0);
    }
    for (int i=0 ; i<cnt ; ++i)
        if (prim[i]*2<N)
            b[prim[i]*2]=Complex(1,0);
    FFT(a,len,1);
    FFT(b,len,1);
    for (int i=0 ; i<len ; ++i)//两个重复的加上另外一个数
        a[i]=a[i]*b[i];
    FFT(a,len,-1);
    for (int i=0 ; i<len ; ++i)
        tmp[i]=(ll)(a[i].real+0.5);
    for (int i=0 ; i<len ; ++i)
        res[i]=(res[i]+tmp[i]*2)/3;
    for (int i=0 ; i<N ; ++i)
        ans[i]=(ans[i]+res[i]%mod)%mod;
}
void threemul()//三个相乘的情况
{
    for (int i=0 ; i<cnt ; ++i)
    {
        bool flag=0;
        for (int j=i ; j<cnt ; ++j)
        {
            if ((ll)prim[i]*prim[j]>(ll)N)
                break;
            for (int k=j ; k<cnt ; ++k)
            {
                if (i==j && k==j && (ll)prim[i]*prim[j]*prim[k]>(ll)N)
                {
                    flag=1;
                    break;
                }
                if ((ll)prim[i]*prim[j]*prim[k]>N)
                    break;
                ans[prim[i]*prim[j]*prim[k]]=(ans[prim[i]*prim[j]*prim[k]]+1)%mod;
            }
            if ((ll)prim[i]*prim[j]*prim[j]>=(ll)N || flag)
                break;
        }
        if (flag)
            break;
    }
}
void initial()
{
    cnt=0;
    mark[0]=mark[1]=1;
    memset(ans,0,sizeof(ans));
    for (int i=2 ; i<N ; ++i)
    {
        if (!mark[i])
        {
            prim[cnt++]=i;
            ans[i]=(ans[i]+1)%mod;//当前数为素数(即用一个数)
            if (i*3<N)
                ans[i*3]=(ans[i*3]+1)%mod;//三个相同的数相加
        }
        for (int j=0 ; j<cnt && i*prim[j]<N ; ++j)
        {
            mark[i*prim[j]]=1;
            if (!(i%prim[j]))
                break;
        }
    }
    int len=1;
    while (len<(N<<1))
        len<<=1;
    twomuladd(len);
    threeadd(len);
    threemul();
}
int main()
{
    initial();
    int x;
    while (~scanf("%d",&x))
    {
        printf("%lld\n",ans[x]);
    }
	return 0;
}







阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页