ZOJ3626 Treasure Hunt Ⅰ[树形DP]

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ControlBear/article/details/75271009




题意:

CC在一个有n个城市的地方住着,而他住在K这座城市,他有m天的时间出去外面收集宝物并且回到自己的城市,如果超过m天回不来,他就会被杀死。每座城市都有相连的城市,n座城市只有n-1条路。


题解:

树形DP+01背包

因为必须返回到自己的城市,所以一开始输入的时候,就把两座城市相连的长度*2表示来回。

然后从k点开始遍历,每次在当前根节点与当前子节点做01背包,得到得到宝物的最大值。

那么转移 就是dp[i][j] 第一维表示当前根节点 第二维表示当前剩下多少天可以走动。

每次遍历,初始化当前dp[now][j]],将其初始化为V[now] 表示当前节点,能剩下j天里面都能得到value的值。

转移的方程就是 dp[now][j]=max(dp[now][j],dp[now][j-k]+dp[next][k-len])

表示我牺牲k天到next节点(记得减去要到next的时候的路途上的消耗天数)能得到的最大值。


#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e2+5;
struct node
{
    int id,len;
    node (int i=0,int l=0):id(i),len(l){}
};
vector<node>vc[N];
int V[N];
int dp[N][N<<1];
int n,m;
void dfs(int now,int fa)
{
    for (int i=0 ; i<=m ; ++i)
        dp[now][i]=V[now];
    for (int i=0 ; i<vc[now].size() ; ++i)
    {
        node next=vc[now][i];
        if (next.id==fa)
            continue;
        dfs(next.id,now);
        for (int j=m ; j>=0 ; --j)
            for (int k=next.len ; k<=j ; ++k)
                dp[now][j]=max(dp[now][j],dp[now][j-k]+dp[next.id][k-next.len]);//记得减去边的消耗T_T
    }
}
int main()
{
	while (~scanf("%d",&n))
    {
        for (int i=1 ; i<=n ; ++i)
            vc[i].clear();
        memset(dp,0,sizeof(dp));
        for (int i=1 ; i<=n ; ++i)
            scanf("%d",&V[i]);
        for (int i=0 ; i<n-1 ; ++i)
        {
            int u,v,t;
            scanf("%d%d%d",&u,&v,&t);
            vc[u].push_back(node(v,t*2));
            vc[v].push_back(node(u,t*2));
        }
        int k;
        scanf("%d%d",&k,&m);
        dfs(k,-1);
        printf("%d\n",dp[k][m]);
    }
	return 0;
}





阅读更多

Treasure Hunt

10-12

DescriptionnnArcheologists from the Antiquities and Curios Museum (ACM) have flown to Egypt to examine the great pyramid of Key-Ops. Using state-of-the-art technology they are able to determine that the lower floor of the pyramid is constructed from a series of straightline walls, which intersect to form numerous enclosed chambers. Currently, no doors exist to allow access to any chamber. This state-of-the-art technology has also pinpointed the location of the treasure room. What these dedicated (and greedy) archeologists want to do is blast doors through the walls to get to the treasure room. However, to minimize the damage to the artwork in the intervening chambers (and stay under their government grant for dynamite) they want to blast through the minimum number of doors. For structural integrity purposes, doors should only be blasted at the midpoint of the wall of the room being entered. You are to write a program which determines this minimum number of doors. nAn example is shown below: n![](http://poj.org/images/1066/t1.jpg)nInputnnThe input will consist of one case. The first line will be an integer n (0 <= n <= 30) specifying number of interior walls, followed by n lines containing integer endpoints of each wall x1 y1 x2 y2 . The 4 enclosing walls of the pyramid have fixed endpoints at (0,0); (0,100); (100,100) and (100,0) and are not included in the list of walls. The interior walls always span from one exterior wall to another exterior wall and are arranged such that no more than two walls intersect at any point. You may assume that no two given walls coincide. After the listing of the interior walls there will be one final line containing the floating point coordinates of the treasure in the treasure room (guaranteed not to lie on a wall).nOutputnnPrint a single line listing the minimum number of doors which need to be created, in the format shown below.nSample Inputnn7 n20 0 37 100 n40 0 76 100 n85 0 0 75 n100 90 0 90 n0 71 100 61 n0 14 100 38 n100 47 47 100 n54.5 55.4 nSample OutputnnNumber of doors = 2

Google Treasure Hunt 2008 素数

12-24

题目:连续 5 个素数之和rn 连续 13 个素数之和rn 连续 275 个素数之和rn 连续 1187 个素数之和rn 求出同时符合以上4个条件的数。rnrn技巧:用数组里的一个位保存一个数是否是素数。rn结果:5615741rn计算用时:17秒 (AMD 2600+)rnrn[code=Delphi(Pascal)]rnunit GoogleHunt5u;rnrninterfacernrnusesrn Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,rn StdCtrls, Spin, SearchDir;rnrntypern TForm1 = class(TForm)rn Button1: TButton;rn Edit1: TEdit;rn Label3: TLabel;rn Label2: TLabel;rn Edit3: TEdit;rn procedure Button1Click(Sender: TObject);rn procedure FormCreate(Sender: TObject);rn privatern Private declarations rn publicrn Public declarations rn end;rnrnvarrn Form1: TForm1;rnrnfunction IsPrime(V: DWORD): Boolean;rnrnimplementationrnrn$R *.DFMrnrnvarrn bitArr: array [0..HIGH(DWORD) div 32] of DWORD;rnrn InitMax: DWORD = 3;rnrnfunction IsPrimeFromBit(V: DWORD): Boolean;rnvarrn p: integer; // 下标rn m: integer; // 余rn mask: DWORD;rnbeginrn if V = DWORD(-1) thenrn sleep(0); // ERRORrn while InitMax < V dorn beginrn if IsPrime(InitMax + 2) thenrn beginrn Inc(InitMax, 2);rn p := InitMax shr 5;rn m := InitMax and $1F;rn mask := 1 shl m;rn bitArr[p] := bitArr[p] or mask;rn endrn elsern Inc(InitMax, 2);rn end;rn p := V shr 5;rn m := V and $1F;rn if m = 0 thenrn beginrn Result := False;rn Exit;rn end;rn mask := 1 shl m;rn if p < 0 thenrn Sleep(1);rn Result := bitArr[p] and mask <> 0;rnend;rnrnfunction IsPrime(V: DWORD): Boolean;rnvarrn i: integer;rn max: DWORD;rnbeginrn max := Round(Sqrt(V));rn i := 3;rn while i <= max dorn beginrn if IsPrimeFromBit(i) thenrn if V mod i = 0 thenrn beginrn Result := False;rn Exit;rn end;rn Inc(i);rn end;rn Result := True;rnend;rnrnfunction NprePrime(V: DWORD; n: integer): integer;rnbeginrn if IsPrimeFromBit(V) thenrn Dec(n, 2)rn elsern Dec(n);rn Dec(V);rn while n > 0 dorn beginrn if IsPrimeFromBit(V) thenrn beginrn Dec(n);rn if n = 0 thenrn beginrn Result := V;rn Exit;rn end;rn end;rn Dec(V);rn if V = 2 thenrn beginrn Result := V;rn Exit;rn endrn end;rnend;rnrnfunction GetNextPrime(V: DWORD): DWORD;rnbeginrn Inc(V);rn while not IsPrimeFromBit(V) dorn beginrn Inc(V);rn end;rn Result := V;rnend;rnrnfunction SumNPrime(V: DWORD; n: integer): DWORD;rnbeginrn Result := V;rn Dec(n);rn while n > 0 dorn beginrn V := GetNextPrime(V);rn Inc(Result, V);rn Dec(n);rn end;rnend;rnrnfunction IsNPrimeSum(V: DWORD; n: integer): Boolean;rnvarrn stV: DWORD;rn sumN: DWORD;rnbeginrn stV:= NprePrime((V div n), n);rn repeatrn sumN := SumNPrime(stV, n);rn stV := GetNextPrime(stV);rn until sumN >= V;rn Result := sumN = V;rnend;rnrnprocedure TForm1.Button1Click(Sender: TObject);rnlabel repgo;rnconstrn Cnt1 = 5;rn Cnt2 = 13;rn Cnt3 = 275;rn Cnt4 = 1187;rnvarrn stV: DWORD;rn st: DWORD;rnbeginrn st := GetTickCount();rn stV := SumNPrime(2, Cnt4);rn while True dorn beginrn Edit1.Text := 'Calc... ' + IntToStr(stV);rn Application.ProcessMessages();rn if IsNPrimeSum(stV, Cnt1) thenrn if IsNPrimeSum(stV, Cnt2) thenrn if IsNPrimeSum(stV, Cnt3) thenrn if IsNPrimeSum(stV, Cnt4) thenrn beginrn Edit1.Text := IntToStr(stV);rn Break;rn end;rn if stV and 1 = 0 then // 偶数rn Inc(stV)rn elsern Inc(stV, 2);rn end;rn st := GetTickCount() - st;rn Edit3.Text := IntToStr(st div 1000);rnend;rnrnprocedure TForm1.FormCreate(Sender: TObject);rnbeginrn FillChar(bitArr, sizeof(bitArr), 0);rn bitArr[0] := $C; // 2,3 are Primernend;rnrnend.rn[/code]

没有更多推荐了,返回首页