ZOJ3626 Treasure Hunt Ⅰ[树形DP]




题意:

CC在一个有n个城市的地方住着,而他住在K这座城市,他有m天的时间出去外面收集宝物并且回到自己的城市,如果超过m天回不来,他就会被杀死。每座城市都有相连的城市,n座城市只有n-1条路。


题解:

树形DP+01背包

因为必须返回到自己的城市,所以一开始输入的时候,就把两座城市相连的长度*2表示来回。

然后从k点开始遍历,每次在当前根节点与当前子节点做01背包,得到得到宝物的最大值。

那么转移 就是dp[i][j] 第一维表示当前根节点 第二维表示当前剩下多少天可以走动。

每次遍历,初始化当前dp[now][j]],将其初始化为V[now] 表示当前节点,能剩下j天里面都能得到value的值。

转移的方程就是 dp[now][j]=max(dp[now][j],dp[now][j-k]+dp[next][k-len])

表示我牺牲k天到next节点(记得减去要到next的时候的路途上的消耗天数)能得到的最大值。


#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e2+5;
struct node
{
    int id,len;
    node (int i=0,int l=0):id(i),len(l){}
};
vector<node>vc[N];
int V[N];
int dp[N][N<<1];
int n,m;
void dfs(int now,int fa)
{
    for (int i=0 ; i<=m ; ++i)
        dp[now][i]=V[now];
    for (int i=0 ; i<vc[now].size() ; ++i)
    {
        node next=vc[now][i];
        if (next.id==fa)
            continue;
        dfs(next.id,now);
        for (int j=m ; j>=0 ; --j)
            for (int k=next.len ; k<=j ; ++k)
                dp[now][j]=max(dp[now][j],dp[now][j-k]+dp[next.id][k-next.len]);//记得减去边的消耗T_T
    }
}
int main()
{
	while (~scanf("%d",&n))
    {
        for (int i=1 ; i<=n ; ++i)
            vc[i].clear();
        memset(dp,0,sizeof(dp));
        for (int i=1 ; i<=n ; ++i)
            scanf("%d",&V[i]);
        for (int i=0 ; i<n-1 ; ++i)
        {
            int u,v,t;
            scanf("%d%d%d",&u,&v,&t);
            vc[u].push_back(node(v,t*2));
            vc[v].push_back(node(u,t*2));
        }
        int k;
        scanf("%d%d",&k,&m);
        dfs(k,-1);
        printf("%d\n",dp[k][m]);
    }
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值