题意:
CC在一个有n个城市的地方住着,而他住在K这座城市,他有m天的时间出去外面收集宝物并且回到自己的城市,如果超过m天回不来,他就会被杀死。每座城市都有相连的城市,n座城市只有n-1条路。
题解:
树形DP+01背包
因为必须返回到自己的城市,所以一开始输入的时候,就把两座城市相连的长度*2表示来回。
然后从k点开始遍历,每次在当前根节点与当前子节点做01背包,得到得到宝物的最大值。
那么转移 就是dp[i][j] 第一维表示当前根节点 第二维表示当前剩下多少天可以走动。
每次遍历,初始化当前dp[now][j]],将其初始化为V[now] 表示当前节点,能剩下j天里面都能得到value的值。
转移的方程就是 dp[now][j]=max(dp[now][j],dp[now][j-k]+dp[next][k-len])
表示我牺牲k天到next节点(记得减去要到next的时候的路途上的消耗天数)能得到的最大值。
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e2+5;
struct node
{
int id,len;
node (int i=0,int l=0):id(i),len(l){}
};
vector<node>vc[N];
int V[N];
int dp[N][N<<1];
int n,m;
void dfs(int now,int fa)
{
for (int i=0 ; i<=m ; ++i)
dp[now][i]=V[now];
for (int i=0 ; i<vc[now].size() ; ++i)
{
node next=vc[now][i];
if (next.id==fa)
continue;
dfs(next.id,now);
for (int j=m ; j>=0 ; --j)
for (int k=next.len ; k<=j ; ++k)
dp[now][j]=max(dp[now][j],dp[now][j-k]+dp[next.id][k-next.len]);//记得减去边的消耗T_T
}
}
int main()
{
while (~scanf("%d",&n))
{
for (int i=1 ; i<=n ; ++i)
vc[i].clear();
memset(dp,0,sizeof(dp));
for (int i=1 ; i<=n ; ++i)
scanf("%d",&V[i]);
for (int i=0 ; i<n-1 ; ++i)
{
int u,v,t;
scanf("%d%d%d",&u,&v,&t);
vc[u].push_back(node(v,t*2));
vc[v].push_back(node(u,t*2));
}
int k;
scanf("%d%d",&k,&m);
dfs(k,-1);
printf("%d\n",dp[k][m]);
}
return 0;
}