HDU6092 Rikka with Subset[母函数]

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ControlBear/article/details/76951911

Rikka with Subset

 HDU - 6092







题意:

给出一个T,代表T组数据。接下来每组数据含有一个n和m,表示这个序列有n个数,这n个数的和是m。再接下来给出m+1个数,表示这n个数任意组合(不重复组合)得到的和的方案数。根据所给的n,m,Bi求出原序列A的值。如果有多组答案,输出字典序最小的一组。


题解:

虽然我知道DP能写的很简短。

因为平常不搞DP,所以对DP并不敏感,这个题第一反应给我的是母函数(然而平常也很少写了,并没有调出一个更优的板子,所以在比赛过程中一直在TLE)。


母函数的想法其实跟原题解的想法是一致的,我们根据前面得到的A的一些数,来得到后面的组合方案,去掉这些方案后,看看是否为0,如果不为0,证明这个数也是符合A序列的,加到答案当中。


因为原本的题面是说A序列中,是非负数,那么肯定认为有0的情况存在,所以我代码中,先剔除了0的影响,而只因0而构成的方案数(不包括空集的时候),应该是B[0]-1的,为了剔除这个影响,所有B[i]都除去B[0],这样可以保证不受0的任何影响,当然,貌似最终题面改了,不存在0的情况,所以可以不作这个处理。


根据自己的观察,我们可以很容易发现,除了B[0]为1,从0开始到下一位不为0的情况,我们设为first,我们可以很容易得到B[first]

就是第1到第B[first]位的A的序列,因为不存在任何数能构成first,除了他们自身,因为他们是最小的,那么首先我们就可以得到第一个多项式,根据二项式定理我们可以在 O(B[first]) 的复杂度里面求出这个多项式(只是感觉用母函数还更慢,所以直接用二项式定理展开),我们就可以得到我们初始的多项式,并且得到当前A序列中能构成的所有数的方案数。


那么接下来,我们就能往后面,减去当前得到的A序列中的小数组合对后面的数的组合的影响,当B[i]的方案数,大于我当前多项式中的系数,那么就代表这个数存在于A序列当中,而且个数为。接下来,我们再把这个多项式(当然也可以先用二项式定理先展开),用母函数组合到我当前的多项式当中,得到目前A序列中所有的数的组合情况。直到得到A序列中的n个数,就可以停止操作,输出我们最终的答案了。


然而,正常的母函数的板子,复杂度实在是太高了,而我们的多项式中,又有很多个0,其实那些项都是多余的,根本不需要去作处理,那么我们就可以保存下当前多项式非0位的位置,然后再做母函数的组合,我们就能很大的降低了复杂度。最后经过这样的处理之后,我们就不会超时啦。



#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e4+10;
int B[N];
int c1[N],c2[N],c3[N];
int h1[N],h2[N],h3[N];
int ans[N];
int l1,l2,l3;
int n,m;
int main()
{
    int T;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d",&n,&m);
        for (int i=0 ; i<=m ; ++i)
            scanf("%d",&B[i]);
        int cnt=0;
        if (B[0]>1)
            for (int i=0 ; i<B[0]-1 ; ++i)
                ans[cnt++]=0;
        for (int i=0 ; i<=m ; ++i)
            B[i]/=B[0];
        int fi=1;
        for (int i=1 ; i<=m ; ++i)
        {
            if (B[i])
            {
                fi=i;
                break;
            }
        }
        for (int i=0 ; i<B[fi]-B[0]+1 ; ++i)
            ans[cnt++]=fi;
        if (cnt>=n)
        {
            for (int i=0 ; i<n ; ++i)
            {
                if (i)
                    printf(" ");
                printf("%d",ans[i]);
            }
            printf("\n");
            continue;
        }
        for (int i=0 ; i<=m ; ++i)
            c1[i]=c2[i]=c3[i]=0;
        l1=0;
        int now=1;
        int up=B[fi],down=1;
        for (int i=0 ; i<=B[fi] ; ++i)
        {
            c1[h1[l1++]=i*fi]=now;
            now*=up;
            now/=down;
            up-=1;
            down+=1;
        }
        for (int i=fi+1 ; i<=m ; ++i)
        {
            if (B[i] && c1[i]<B[i])
            {
                for (int j=0 ; j<B[i]-c1[i] ; ++j)
                    ans[cnt++]=i;
                if (cnt>=n)
                    break;
                now=1;
                up=B[i]-c1[i];
                down=1;
                l3=0;
                l2=0;
                for (int j=0 ; j<=B[i]-c1[i] ; ++j)
                {
                    c3[h3[l3++]=j*i]=now;
                    now*=up;
                    now/=down;
                    up-=1;
                    down+=1;
                }
                for (int j=0 ; j<l1 ; ++j)
                {
                    for (int k=0 ; k<l3 ; ++k)
                    {
                        if (!c2[h1[j]+h3[k]])
                            h2[l2++]=h1[j]+h3[k];
                        c2[h1[j]+h3[k]]+=c1[h1[j]]*c3[h3[k]];
                    }
                }
                for (int j=0 ; j<l2 ; ++j)
                {
                    c1[h2[j]]=c2[h2[j]];
                    h1[j]=h2[j];
                    c2[h2[j]]=c3[h3[j]]=0;
                }
                l1=l2;
            }
        }
        for (int i=0 ; i<n ; ++i)
        {
            if (i)
                printf(" ");
            printf("%d",ans[i]);
        }
        printf("\n");
    }
    return 0;
}


阅读更多

没有更多推荐了,返回首页