Stable Diffusion - 轻松更换图片的背景

轻松更换图片的背景

今天,我们将带您探索如何利用Stable Diffusion,利用现有图像指定更换图像的背景构图信息,也就是将两张图像进行融合从而达到更换图像背景的目的。

实战体验

1、制作局部重绘蒙版

这里生成蒙版使用的是插件Inpaint Anything,所以没有安装该插件的需要先进行该插件的安装。蒙版制作步骤如下所示:

  • 在输入图像中,上传对应的图片

  • 点击按钮 Run Segment Anything,生成对应的预览图

  • 圈定需要生成蒙版的区域

  • 点击 Create Mask 按钮,获取圈选的区域

  • 在Mask Only 标签中,点击Get Mask获取蒙版图像,并下载保存到本地

2、蒙版局部重绘

在图生图标签页中选择局部重绘(上传蒙版),并上传人物图像和蒙版图像。

操作注意:

  • 重绘区域选择蒙版外,也就是非蒙版区域

  • 重绘幅度设置大一些,大于0.75。这里我直接设置到1

ControlNet局部重绘设置

ControlNet图像参考(Reference)设置

上传需要替换的背景图像

ControlNet线稿(Lineart)设置

上传需要替换的背景图像,并生成图像的线稿图

绘图

到这里使用指定图像更换背景就基本完成了,剩下就是多次生成图像并选择一张满意的图像,然后再做最后的放大拟合处理。

正向主体提示语,包含人物和背景的描述

Best quality,masterpiece,ultra high res,(photorealistic:1.4),raw
photo,1girl,long hair,(black hair:1.3),(beauty:1.3),blue eyes,stand on the
plateau,

生成的图像效果图如下所示:

3、图像放大拟合

将比较满意的图像发送到图生图中进行放大处理。

操作注意:

  • 关闭所有的ControlNet

  • 重绘幅度设置为0.3

  • 勾选Tiled Diffusion,并设置放大倍数为1.5

  • 勾选Tiled VAE

图生图设置:

Tiled Diffusion & Tiled VAE设置:

输出效果图:

最后

如果你是真正有耐心想花功夫学一门技术去改变现状,我可以把这套AI教程无偿分享给你,包含了AIGC资料包括AIGC入门学习思维导图AIGC工具安装包精品AIGC学习书籍手册AI绘画视频教程AIGC实战学习等。

这份完整版的AIGC资料我已经打包好,长按下方二维码,即可免费领取!

在这里插入图片描述

【AIGC所有方向的学习路线思维导图】

img

【AIGC工具库】

img

【精品AIGC学习书籍手册】

img

【AI绘画视频合集】

img
这份完整版的AIGC资料我已经打包好,长按下方二维码,即可免费领取!
在这里插入图片描述

### Stable Diffusion-XL 模型介绍 Stable Diffusion-XL (SDXL) 是一种先进的图像生成模型,其具体架构与之前的版本相似但具有更大规模和更多参数量[^1]。该模型旨在提供更高质量的图像生成效果,在保持计算效率的同时提升了视觉质量。 #### SDXL Refiner 模型 除了基础模型外,还存在一个名为 `stable-diffusion-xl-refiner-1.0` 的细化模型。此模型基于潜在扩散机制工作,专注于改善由基础模型产生的初步图像的质量。Refiner 主要用于执行最终阶段的降噪操作,从而增强图像细节并提高整体清晰度[^2]。 ### 使用方法 为了方便用户访问多种不同的预训练权重文件,一些第三方工具已经集成了多个版本的 SDXL 模型。例如,在 AUTOMATIC1111 开发的 WebUI 中可以找到如下几个选项: - `sd_xl_base_1.0.safetensors`: 基础版 SDXL 模型 - `animagine-xl-3.0-base.safetensors`: 另一变体的基础模型 - `Anything-V3.0-pruned.safetensors`: 经过剪枝优化后的特定风格化模型 这些模型可以通过图形界面轻松加载,并支持自定义设置来调整生成过程中的各项参数[^3]。 对于希望利用 Python 编程接口调用 SDXL 功能的应用开发者来说,有教程介绍了如何借助百度 API 实现这一点。这使得即使不具备深厚机器学习背景的人也能快速上手创建自己的艺术作品或实用程序[^4]。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-xl-base-1.0" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16).to("cuda") prompt = "A majestic lion jumping from a big stone at night" image = pipe(prompt=prompt).images[0] image.save("./output_image.png") ``` 上述代码片段展示了如何使用 Hugging Face 提供的库加载并运行 SDXL 模型以生成指定主题的艺术图片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值