cpp中递归 cpp可以自己调自己,与C不同,cpp不允许main()调用自己,这种功能被称为递归。1.包含一个递归调用的递归如果递归函数调用自己,则被调用的函数也将调用自己,这将无限循环下去,除非代码中包含终止调用链的内容,通常的方法将递归调用放在if语句中,例如:void recurs(argumentlist){ statements1 if (test) recurs(arguments) statements2}#include <iost
pybind安装和vs环境配置 Pybind官方文档解读&使用教程_哔哩哔哩_bilibili解读Pybind官方英文文档 目标:将Python Runtime嵌入到C++中运行https://www.bilibili.com/video/BV1QL4y1e77u?spm_id_from=333.337.search-card.all.click在windows上的安装和配置过程,一般在linux上要更简单一点。1.pip 安装pybind112.新建一个新的cpp程序空项目,在源文件中添加c++文件3.配置pyb
函数和string对象 虽然C风格字符串和string对象的用途几乎相同,但与数组相比,string对象与结构的更相似,例如可以将一个结构赋给另一个结构买也可以讲一个对象赋给另一个对象。可以将结构作为完整的实体传递给函数,也可以将对象作为完整的实体进行传递。如果需要多个字符串,可以声明一个string对象数组,而不是二维char数组。#include <iostream>#include <string>using namespace std;const int SIZE = 5;void d
cpp中函数和结构 结构变量和数组一样,都可以存储多个数据项,但在涉及到函数时,结构变量的行为更接近于基本的单值变量。也就是说,与数组不同,结构将其数据组合成单个实体或数据对象,该实体被视为一个整体。可以将一个结构赋给另外一个结构,同样,也可以按值传递结构,就像普通变量那样。在这种情况下,函数将使用原始结构的副本。另外,函数也可以返回结构,与数组名就是数组第一个元素的地址不同的是,结构名只是结构的名称,要获得结构的地址,必须使用地址运算符&。在C/cpp中,都使用符号&来表示地址运算符,cpp还是用该运算符来表
函数和C-风格字符串 C风格字符串由一系列字符组成,以空值字符结尾。将字符串作为参数时意味着传递的是地址,但可以用const来禁止对字符串参数进行修改。1.将C风格字符串作为参数的函数假设要将字符串作为参数传递给函数,则表示字符串的方式有三种:char数组;用引号括起的字符串常量(也称字符串字面值);被设置为字符串的地址的char指针。但上述3种选择的类型都是char指针,准确的说是char*,因此可以将其作为字符串处理函数的参数:char ghost[15] = 'galloping';char* st
调试mmcls 调试mmcls主要是让自己记住要改的几步,不然总是容易忘。1.数据输入有两种,一种可以带ann_file形式,一种是不带,通常不带的,就直接取train文件下的几类做训练的,如果是带,形式上是一行图片名称,后面跟类别,135efbeaeb592d3b51edca5dff099de6 1这种形式是不可取的,要完整的文件名,否则要去修改一下,要记住mm系列中数据集和数据前处理是分离的,数据集是用来__getitem__和测评数据的,前处理是处理成模型想要的输入格式。格式不对,属于读取数据在load
cpp中函数和二维数组 为编写将二维数组作为参数的函数,则牢记,数组名被视为其地址,因此,相应的形参是一个指针,就像一维数组一样。int data[3][4] = {{1,2,3,4},{9,8,7,6},{2,4,6,8}};int total = sum(data,3);data是一个数组名,该数组有3个元素,第一个元素本身是一个数组,有4个int值组成,因此data的类型是指向由4个int组成的数组的指针。因此正确的原型如下:int sum(int (*ar2)[4],int size);其中的括号是必
Fully Convolutional Networks for Semantic Segmentation fcn提出了一个新颖的架构,目前来看,这也几乎是目前所有的语义分割问题的架构,encoder-decoder架构。1.introductionfrom coarse to fine inference is to make a prediction at every pixel,从粗推理到精细推理的下一步是对每个像素进行预测。Semantic segmentation faces an inherent tension betweensemantics and locati...
Encoder-decoder with atrous separable convolution for semantic image segmentation 经典语义分割论文解读-Deeplab系列 - 知乎作为使用深度学习方法解决计算机视觉问题的一个重要分支,语义分割一直是一个重要的研究方向,一大堆研究人员前仆后继的往这个坑里跳,也相继的产出了很多惊艳的研究成果,今天我们一起了解下语义分割中很重要的一…https://zhuanlan.zhihu.com/p/357082897关于全卷积神经网络的思考 - 知乎最近一个月先后想明白了目标检测和图像分类、语意分割和图像分类之间的联系。 通过论文《Single-Stage Multi-Person Pose Mac
cv2.matchShape() 函数cv2.matchShape()可以比较两个形状或轮廓的相似度。如果返回值越小,匹配越好。它是根据Hu矩来计算的,Hu矩是归一化中心矩的线性组合,之所以这么做是为了能够获取代表图像的某个特征的矩函数,这些矩函数对某些变换如缩放,旋转,镜像映射(除了h1)具有不变性。double cv::matchShapes ( InputArray contour1,InputArray contour2,int method,double parameter ) Py...
cv2.contourArea、cv2.arcLength、cv2.approxPolyDP、cv2.convexHull、cv2.boundingRect、cv2.minAreaRect 这里面相对比较核心的是cv2.boundingRect和cv2.minAreaRect,后者用的非常多,上述所有方法的输入都是点集,对于minAreaRect,输入的是findContours找到的点集,然后获取一个完整的边界矩形,这个边界矩形通常会作为检测的结果,在文本检测中是常用的。我这里先给一个任务,然后来看一下以上这些方法是如何作用的?任务本身还简单,就是将下面这张图做一些切分,分成上下横版和竖版两张图。import osimport cv2import nu...
cv2.findContours、cv2.drawContours cv2.findContours()是非常常用的方法,在文字检测例如dbnet的后处理中,通常预测产生的概率图或者二值图要产生检测的边界,通常使用findContours方法找出边界在还原,除此之外一些对边缘的监督学习制作的标签也往往使用findContours方法。这个方法也有个缺点就是速度很慢,如果一次检测的二值图有很多的话,每个二值化都要找所有的边界点的话会很慢,虽然可以控制是否存储所有点,但是找的过程是针对所有点而言的。void cv::findContours ( Inpu...
automated creative optimization for e-commerce advertising Variational AutoEncoder系列 - 知乎在 生成模型(Generative Models)大家族里面,有两个家族特别著名,分别是变分自编码器(Variational Auto Encoder, VAE)和生成对抗网络(Generative Adversarial Networks, GAN)。本文主要是研究VAE,自然先回…https://zhuanlan.zhihu.com/p/57574493变分自编码器VAE:原来是这么一回事 | 附开源代码 - 知乎作者丨苏剑林 单位丨广州火焰信
cv2.warpAffine、cv2.warpPerspective opencv提供了两个变换函数,cv2.warpAffine和cv2.warpPerspective,使用这两个函数你可以实现所有类型的变换,cv2.warpAffine接收的参数2x3的变换矩阵,而cv2.warpPerspective接收的3x3的变换矩阵。1.扩展缩放import cv2import numpy as npimg=cv2.imread('messi5.jpg')# 下面的None 本应该是输出图像的尺寸,但是因为后边我们设置了缩放因子# 因此这里...
Image Manipulation Detection by Multi-View Multi-Scale Supervision 【速览】ICCV 2021丨MVSS-Net: 基于多视角多尺度监督的图像篡改检测《速览》栏目长期接收顶会顶刊文章精华稿件,欢迎投稿~https://mp.weixin.qq.com/s/Jkq2gQX-_Ss3kziIJU-oEg
cv2.rectangle() cv2.rectangle()void cv::rectangle ( InputOutputArray img,Point pt1,Point pt2,const Scalar & color,int thickness = 1,int lineType = LINE_8,int shift = 0 ) Python:img = cv.rectangle( img, pt1, pt2, color[, thickness[, lineType[, shif