定义
字典树又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。
性质
1、根节点不包含字符,除根节点外每一个节点都只包含一个字符;
2、从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串;
3、每个节点的所有子节点包含的字符都不相同。
应用
1、串的快速检索
给出 n 个单词组成的熟词表,以及一篇全用小写英文书写的文章,请你按最早出现的顺序写出所有不在熟词表中的生词。可以用字典树,先把熟词建一棵树,然后读入文章进行比较,这种方法效率是比较高的。
2、串排序
给定 n 个互不相同的仅由一个单词构成的英文名,让你将他们按字典序从小到大输出。用字典树进行排序,采用数组的方式创建字典树,这棵树的每个结点的所有儿子很显然地按照其字母大小排序。对这棵树进行先序遍历即可。
3、最长公共前缀
对所有串建立字典树,对于两个串的最长公共前缀的长度即他们所在的结点的公共祖先个数,于是,问题就转化为当时公共祖先问题。
大致实现
1、从根结点开始一次搜索;
2、取得要查找关键词的第一个字母,并根据该字母选择对应的子树并转到该子树继续进行检索;
3、在相应的子树上,取得要查找关键词的第二个字母,并进一步选择对应的子树进行检索。
4、迭代
5、在某个结点处,关键词的所有字母已被取出,则读取附在该结点上的信息,即完成查找。
具体代码
struct node
{
int num; //如果该节点是一个单词的结尾,记录对应单词的编号
//(这里也可以记录以该节点为前缀的出现次数)
int next[26];//儿子节点的编号
}trie[maxn];
void insert(string str,int k)
{
int len=str.length(),p=0;//0为根节点
for(int i=0;i<len;i++)
{
int to=str[i]-'a';//将字符c[i]转换成值为0到25的数字,比如'a'转换为0,'b'转换为1,‘c’转换为2……
if(trie[p].next[to]==0) //若p没有值为t的儿子
{
tot++; //新增一个编号为tot的节点
trie[p].next[to]=tot; //记下p的值为t的孩子节点的编号
p=trie[p].next[to]; //p指向新添加的节点
trie[p].num=0; //初始化新添加的节点,将其标记为不是单词的结尾
}
else p=trie[p].next[to]; //若p存在值为t的儿子,p指向该儿子,继续讨论
}
trie[p].num=k; //for循环已执行完,说明第k个单词已加入,在单词结尾做上标记
}
int find(string str)
{
int len=str.length(),p=0;
for(int i=0;i<len;i++)
{
int to=str[i]-'a';
if(trie[p].next[to]==0) return 0; //当前要匹配值为t的字母,若没有则结束
p=trie[p].next[to]; //若存在值为t的字母,则继续匹配
}
return trie[p].num; //若for循环执行完毕,说明找到了需要的单词,返回其编号
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);cout.tie(0);
return 0;
}