目录
826. 安排工作以达到最大收益
题目描述:
你有 n
个826. 安排工作以达到最大收益工作和 m
个工人。给定三个数组: difficulty
, profit
和 worker
,其中:
difficulty[i]
表示第i
个工作的难度,profit[i]
表示第i
个工作的收益。worker[i]
是第i
个工人的能力,即该工人只能完成难度小于等于worker[i]
的工作。
每个工人 最多 只能安排 一个 工作,但是一个工作可以 完成多次 。
- 举个例子,如果 3 个工人都尝试完成一份报酬为
$1
的同样工作,那么总收益为$3
。如果一个工人不能完成任何工作,他的收益为$0
。
返回 在把工人分配到工作岗位后,我们所能获得的最大利润 。
示例 1:
输入: difficulty = [2,4,6,8,10], profit = [10,20,30,40,50], worker = [4,5,6,7] 输出: 100 解释: 工人被分配的工作难度是 [4,4,6,6] ,分别获得 [20,20,30,30] 的收益。
示例 2:
输入: difficulty = [85,47,57], profit = [24,66,99], worker = [40,25,25] 输出: 0
提示:
n == difficulty.length
n == profit.length
m == worker.length
1 <= n, m <= 104
1 <= difficulty[i], profit[i], worker[i] <= 105
实现代码与解析:
排序
class Solution {
public int maxProfitAssignment(int[] difficulty, int[] profit, int[] worker) {
int n = difficulty.length;
int[][] arr = new int[n][2];
for (int i = 0; i < n; i++) {
arr[i][0] = difficulty[i];
arr[i][1] = profit[i];
}
Arrays.sort(arr, (a, b) -> a[0] - b[0]);
Arrays.sort(worker);
int res = 0;
int t = 0;
int maxProFit = 0;
for (int w : worker) {
while (t < n && arr[t][0] <= w) {
maxProFit = Math.max(arr[t++][1], maxProFit);
}
res += maxProFit;
}
return res;
}
}
原理思路:
将任务难度和收益放在一起int[2]放入数组利用任务难度排序,工人呢能力进行排序,第 i个工人能做的工作,他右边的工人也能做,遍历时不用重新开始遍历。