灰色关联分析笔记

什么时候用灰色关联分析?

灰色关联分析 是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法
【若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低】

当样本个数 n 较大时,用标准化回归(第7讲学),当样本个数 n 较少时,用灰色关联分析

灰色关联分析的顺序

正向化(若已经全是极大型 则不需要)
预处理(每一个元素都被预处理)
构造母序列和子序列(若题目本身已给出 则不需要)
计算各个指标与母序列的灰色关联度(每一列 都可以求出一个灰色关联度)
针对各个指标的权重 计算每一个元素的得分(若每一列的灰色关联度都一样 则不需要)
对得分进行归一化 并排序

下图引用自 数学建模灰色关联分析法——学习笔记(一)
在这里插入图片描述

使用灰色关联分析的两种套路

① 用于系统分析(比较母序列与哪个子序列最接近)

我们以下图举例,分析国内生产总值与哪一个产业的影响最大?
在这里插入图片描述
在这里插入图片描述

load gdp.mat							    % 导入数据
Mean = mean(gdp); 						    % 求出每一列的均值以供后续的数据预处理
gdp = gdp ./ repmat(Mean,size(gdp,1),1);    % 将矩阵进行复制为和gdp同等大小,然后使用点除(对应元素相除)

disp('预处理后的矩阵为:'); disp(gdp)
Y = gdp(:,1);  								% 母序列
X = gdp(:,2:end); 							% 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))   % 计算|Y-Xi|矩阵
a = min(min(absX0_Xi))   				    % 计算两级最小差a
b = max(max(absX0_Xi))  					% 计算两级最大差b

rho = 0.5;								    % 分辨系数取 0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)    % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))

② 用于综合评价模型(评价哪个子序列是最优解)

以下图为例
在这里插入图片描述
在这里插入图片描述

load data_water_quality.mat  			% 导入数据

...      								% 进行正向化(操作就省略了)

%% 对正向化后的矩阵进行预处理
Mean = mean(X); 					    % 求出每一列的均值以供后续的数据预处理
Z = X ./ repmat(Mean,size(X,1),1);  
disp('预处理后的矩阵为:'); disp(Z)

%% 构造母序列和子序列
Y = max(Z,[],2);  						% 母序列为虚拟的,用每一行的最大值构成的列向量表示母序列
X = Z; 									% 子序列就是预处理后的数据矩阵

%% 计算得分
absX0_Xi = abs(X - repmat(Y,1,size(X,2))) 		  % 计算|X0-Xi|矩阵
a = min(min(absX0_Xi)) 						      % 计算两级最小差a
b = max(max(absX0_Xi))  						  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b) 		  % 计算子序列中各个指标与母序列的关联系数
weight = mean(gamma) / sum(mean(gamma));  		  % 利用子序列中各个指标的灰色关联度计算权重
score = sum(X .* repmat(weight,size(X,1),1),2);   % 未归一化的得分
stand_S = score / sum(score);  					  % 归一化后的得分
[sorted_S,index] = sort(stand_S ,'descend')		  % 进行排序

对于这题,我们需要自己构造母序列和子序列,每一行的最大值构成的列向量表示母序列,而预处理后的矩阵表示子序列,接下来,就可以比较母序列与哪个子序列最接近了

切记不能直接用于论文中,要根据题目适当的修改,避免查重

补充:

一般情况下母序列只有一个,但若母序列含有多个,则每个母序列都要与子序列算一遍,算出的灰色关联度,再来求平均值

灰色关联分析的评估

灰色关联分析 的优势:
(1)因此对样本量的多少没有过多的要求,也不需要典型的分布规律,而且计算量比较小,其结果与定性分析结果会比较吻合。
(2)是系统分析中比较简单、可靠的一种分析方法
灰色关联分析 的缺点:
(1)随着灰色关联分析理论应用领域的不断扩大,现有的一些模型存在的不足之处使得其不能很好地解决某些方面的实际问题
(2)整个理论体系目前还不是很完善,其应用受到了某些限制

  • 4
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
灰色关联分析法是一种用于数学建模的方法,它主要用于综合评价和系统分析。在综合评价方面,灰色关联分析可以给出研究对象或方案的优劣排名。在系统分析方面,它可以判断影响系统发展的因素的重要性。\[1\] 灰色关联分析的基本流程包括数据无量纲化处理、确定参考序列、确定权重、计算灰色关联系数和计算灰色加权关联度。通过这些步骤,可以得出对于给定的一些因素,哪些因素对系统而言是主要因素,哪些因素是次要因素,哪些因素对系统发展影响大,哪些因素对系统发展影响小的结论。\[1\]\[2\] 灰色关联分析的特点是可以进行分析子序列和母序列之间的关系,即使数据量较少或者数据没有规律。它的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线越接近,相应序列之间的关联度就越大,反之则越小。\[2\] 因此,灰色关联分析方法可以通过衡量因素之间发展趋势的相似或相异程度来评估因素间的关联程度,即灰色关联度。这种方法可以帮助我们了解因素之间的关联性,从而指导系统的发展和决策。\[3\] #### 引用[.reference_title] - *1* *3* [数学建模:评价性模型学习——灰色关联分析法(GRA模型)](https://blog.csdn.net/weixin_67565775/article/details/126631290)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数学建模灰色关联分析法——学习笔记(一)](https://blog.csdn.net/weixin_43793141/article/details/105258341)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值