数学建模常用模型(四):灰色关联分析法

文章介绍了灰色关联分析法,一种多指标决策评价技术,用于分析指标间关联性。通过数据标准化、构建关联度矩阵和计算关联度系数等步骤进行分析。文中给出了使用Python的FactorAnalyzer库进行因素分析的示例,展示了如何处理专项成绩和素质因素的相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学建模常用模型(四):灰色关联分析法

灰色关联分析法(Grey Relational Analysis,GRA)是一种用于多指标决策评价的方法,由灰色系统理论发展而来。它用于分析和评价多个指标之间的相关性和影响程度,帮助决策者进行综合评价和决策。
这是我自己总结的一些代码和资料(本文中的代码以及参考书籍等),放在github上供大家参考:https://github.com/HuaandQi/Mathematical-modeling.git

1.灰色关联分析法的基本步骤如下:

  1. 数据标准化:将原始指标数据进行标准化,使得数据在相同范围内,并消除因量纲不同而引起的影响。

  2. 构建关联度矩阵:根据标准化后的数据,计算各个指标之间的关联度。关联度矩阵反映了各个指标之间的相似程度。

  3. 确定关联度函数:根据问题的特点和需求,选择合适的关联度函数来计算指标之间的关联度。常用的关联度函数包括线性关联度函数、指数关联度函数等。

  4. 计算关联度系数:根据关联度函数,计算出各个指标与目标指标之间的关联度系数。关联度系数越大,表示指标与目标指标之间的关联程度越高。

  5. 综合评价:将各个指标的关联度系数进行加权综合,得到最终的综合评价结果。权重的分配可以根据实际需求和决策者的主观判断来确定。

2.计算公式

计算灰色关联系数:
请添加图片描述
计算灰色加权关联度,计算公式为:
请添加图片描述
其中ri就是第i个指标对理想对象(参考数列,一般该数列都是1,就是最有情况)的加权关联度。就可以认为是评价的结果。

3.程序实例

通过对某健将级女子铅球运动员的跟踪调查,获得其 1982年至1986年每年最好成绩及16项专项素质和身体素质的时间序列资料,试对此铅球运动员的专项成绩进行因素分析。

import pandas as pd
import numpy as np
from factor_analyzer import FactorAnalyzer

# 创建数据框
data = pd.DataFrame({
    'Year': [1982, 1983, 1984, 1985, 1986],
    'Specialty_Score': [80, 85, 78, 90, 87],
    'Quality1': [3.5, 4.2, 3.8, 4.0, 3.9],
    'Quality2': [2.5, 2.8, 3.2, 2.9, 3.1],
    'Quality3': [4.8, 4.5, 4.7, 4.9, 4.6],
    'Physical1': [8, 8.5, 9, 8.2, 8.6],
    'Physical2': [6.5, 6.7, 6.9, 7.2, 7.0],
    'Physical3': [9.5, 9.2, 9.8, 9.4, 9.6]
})

# 提取因素分析所需的数据
factor_data = data.iloc[:, 2:]

# 创建因素分析对象
fa = FactorAnalyzer(n_factors=3, rotation='varimax')

# 执行因素分析
fa.fit(factor_data)

# 获取因子载荷矩阵
loadings = fa.loadings_

# 打印因子载荷矩阵
print("因子载荷矩阵:")
print(loadings)

在这个示例中,我们创建了一个包含专项成绩和素质的数据框。然后,我们使用FactorAnalyzer类创建了一个因素分析对象,并使用fit方法对数据进行因素分析。我们设置了3个因子,并选择了旋转方法为varimax。最后,我们获取并打印因子载荷矩阵,它显示了每个指标与每个因子之间的相关性。

4.运行结果

因子载荷矩阵:
[[ 0.19683026 -0.94019786  0.27004129]
 [ 0.89526287 -0.06774054  0.44116648]
 [-0.45872014  0.57584204  0.51864933]
 [ 0.97239538 -0.09571545  0.00547983]
 [ 0.26233715 -0.14818179  0.95437284]
 [ 0.63675259  0.76214372  0.11820335]]
灰色关联分析法是一种用于数学建模的方法,它主要用于综合评价和系统分析。在综合评价方面,灰色关联分析可以给出研究对象或方案的优劣排名。在系统分析方面,它可以判断影响系统发展的因素的重要性。\[1\] 灰色关联分析的基本流程包括数据无量纲化处理、确定参考序列、确定权重、计算灰色关联系数和计算灰色加权关联度。通过这些步骤,可以得出对于给定的一些因素,哪些因素对系统而言是主要因素,哪些因素是次要因素,哪些因素对系统发展影响大,哪些因素对系统发展影响小的结论。\[1\]\[2\] 灰色关联分析的特点是可以进行分析子序列和母序列之间的关系,即使数据量较少或者数据没有规律。它的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线越接近,相应序列之间的关联度就越大,反之则越小。\[2\] 因此,灰色关联分析方法可以通过衡量因素之间发展趋势的相似或相异程度来评估因素间的关联程度,即灰色关联度。这种方法可以帮助我们了解因素之间的关联性,从而指导系统的发展和决策。\[3\] #### 引用[.reference_title] - *1* *3* [数学建模:评价性模型学习——灰色关联分析法(GRA模型)](https://blog.csdn.net/weixin_67565775/article/details/126631290)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数学建模灰色关联分析法——学习笔记(一)](https://blog.csdn.net/weixin_43793141/article/details/105258341)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红狐狸的北北记

红狐狸背着行囊上路,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值