分布式与一致性协议之ZAB协议(一)

ZAB协议

概述

很多人应该都使用过ZooKeeper, 它是一个开源的分布式协调服务,比如你可以用它进行配置管理、名字服务等。在ZooKeeper中,数据是以节点的形式存储的。如果你要用ZooKeeper做配置管理,那么就需要在里面创建指定配置,假设创建节点/geekbang和/geekbang/time,步骤如代码所示:

[zk: localhost:2181(CONNECTED) 0] create /geekbang 123
Created /geekbang
[zk: localhost:2181(CONNECTED) 1] create /geekbang/time 456
Created /geekbang/time

我们分别创建了配置节点/geekbang和/geekbang/time,对应的值分别为123和456.那么在这里提个问题:你觉得在ZooKeeper中能用兰伯特的Multi-Paxos实现各节点数据的公式一致吗?
当然不行。因为兰伯特的Multi-Paxos虽然能保证达成共识后的值不再改变,但它并不关心达成共识的值是什么,也无法保证各值(也就是操作)的顺序性。而这时ZAB协议着力解决的,也是你理解ZAB协议的关键。
为了更好地理解这个协议,接下来将分别以如何实现操作的顺序性、领导者选举、故障恢复、处理读写请求为例展开具体讲解。希望能在全面理解ZAB协议的同时,加深对Paxos算法的理解,接下来,我们从ZAB协议的最核心设计目标(如何实现操作的顺序型)出发,了解它的基础原理。
老规矩,我们先来看一道思考题。
假如有一个由节点A、B、C组成的分布式集群(如图所示),我们要设计一个算法来保证指令(比如X、Y)执行的顺序型,比如指令X在指令Y之前执行,那么我们该如何设计这个算法呢?
在这里插入图片描述

如何实现操作的顺序型?

在了解如何实现操作的顺序性之前,我们先来了解下为什么Multi-Paxos无法保证操作的顺序性。

为什么Multi-Paxos无法保证操作的顺序性

为了让你真正理解这个问题,举个具体的例子演示以下(为了演示方便,我们假设当前所有节点上被选定指令的最大序号都为100,那么新提议的指令对应的序号就会是101),假设这时节点A故障了,新当选的领导者为节点B.节点B当选领导者后,需要先作为学习者了解目前已被选定的指令。节点B学习之后,发现当前被选定指令的最大序号为100(因为节点A故障了,它的被选定指令的最大序号102无法被节点B发现),那么它可以从序号101开始提议新的指令。这时节点B接收到客户端请求,并提议指令Z,指令Z被成功复制到节点B、C,如图所示。在这里插入图片描述
在这里插入图片描述

假设这时节点B故障了,节点A故障恢复了,选举出领导者C后,节点B故障也恢复了。节点C当选领导者后,需要先作为学习者了解目前已被选定的指令,这时它执行Basic Paxos的准备阶段就会发现之前选定的值(比如Z、Y),然后发送接受请求,最终在序号101、102达成共识的指令是Z、Y,如图所示。在这里插入图片描述

可以看到,原本预期的指令是X、Y,最后变成了Z、Y。现在,你应该可以知道为社么Multi-Paxos不能达到我们想要的结果了吧?
这个过程其实很明显地验证了"Multi-Paxos虽然能保证达成共识后的值不再改变,但它不关心达成共识的值是什么"。
我们接着回到前面的问题,假设我们在ZooKeeper中直接使用了兰伯特的Multi-Paxos,那么系统在创建节点/geekbang和/geekbang/time时就可能会出现先创建节点/geekbang/time的情况,这样肯定就出错了,如代码所示

[zk: localhost:2181(CONNECTED) 9] create /geekbang/time 456
Node does not exist: /geekbang/time

因为创建节点/geekbang/time时找不到节点/geekbang,所以创建失败。
在这里多说几句,除了Multi-Paxos,兰伯特还有很多关于分布式的理论,这些理论都很经典(比如拜占庭将军问题),但也因为提出的时间太早了,与实际场景结合的不多,所以后续的众多算法都在这些理论的基础上做了大量的改进(比如,PBFT、Raft等算法)。
另外再延申一下,其实ZAB论文"Zab:High-Performance Broadcast for Primary-Backup System"中关于Paxos问题的分析是有争议的。ZooKeeper当时应该考虑的是Multi-Paxos,而不是有多个提议者的Basic Paxos.因为在Multi-Paxos中,领导者作为唯一提议者,是不存在同时有多个提议者的情况。也就是说,Paxos(更确切地说是Multi-Paxos)无法保证操作的顺序性,但问题的原因不是ZAB论文中演示的原因,本质上是因为Multi-Paxos实现的是一系列值的共识,而不关心最终达成共识的值是什么,也不关心各值得顺序,就像上面演示的过程那样。
既然Multi-Paxos不合适,ZooKeeper是如何实现操作的顺序性的呢?答案是它采用了ZAB协议。
你可能会说:Raft算法可以实现操作的顺序性,为什么ZooKeeper不采用Raft算法呢?这个问题的答案其实比较简单,因为Raft算法是在2013年才正式提出,而ZooKeeper是在2007年开发出来的。

注意

说到ZAB协议,很多人可能有这样的疑问:为什么ZAB协议的作者在"Zab vs. Paxos"宣称ZAB协议不是Paxos算法,但又有很多资料提到ZAB协议是
Multi-Paxos算法呢?究竟该如何理解呢?
我的看法是,你可以把它理解为Multi-Paxos算法。因为技术是发展的,概念的内涵也在变化。ZAB协议与Raft算法(主备、强领导者模型)非常类似,它是作为共识算法和Multi-Paxos算法提出的。当它被广泛接受和认可后,共识算法的内涵也就丰富和发展了,不仅能实现一系列值的共识,还能保证值的顺序性。同样,Multi-Paxos算法不仅指代多次执行Basic Paxos的算法,还能指代主备、强领导者模型的共识算法。
当然,在学习技术过程中,我们不可避免地遇到有歧义、有争议地信息,比如,有人提到,“从网桑搜了搜相关资料,发现大部分资料将谣言传播等同于Gossip协议,也有把反熵等同于Gossip协议地,感到很迷惑”。这就需要我们不仅要在平时地工作和学习中认真、全面地学习理论,掌握概念地内涵,还要能"包容"和"发展"着理解技术

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coffee_babe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值