基于机器学习的android应用分类

这篇博客详细介绍了作者基于机器学习进行Android应用分类的研究过程,包括学习机器学习基础知识,收集apk样本,以及特征分析。作者从吴恩达的课程开始学习,阅读相关论文,收集了1000个左右的良性与恶性apk样本,其中恶性样本来源于virusshare网站,良性样本通过爬虫从小米应用商店获取。特征分析涉及静态和动态检测,分析权限和敏感API等。
摘要由CSDN通过智能技术生成

学习目的:写一篇基于机器学习的Android应用分类的论文,标准为EI即可。

 

整体思路:

一、阅读论文&学习机器学习

1.首先在同学们的推荐下,看了吴恩达《机器学习》的教学视频,看到10-几后面就没有再看了,中间也有很多知识点不太理解,只是对机器学习有了一个初步的认知。

2.阅读了一些英文论文+中文论文。因为之后需要发表的是英文论文,所以开始都是直接看的英文论文。随后有点学不进去的时候,就给自己找了一些中文论文看。看了20篇左右的时候,心里对研究方向大概有了点数。

3.针对分类算法,在《机器学习》那本西瓜书,看了前面几章介绍,看了分类算法。再针对比较钟意的算法找特定的论文来看。

 

二、数据获取

1.需要收集比较大量的数据,进行模型的训练。首先如何确定要多少量级的数据呢?通过阅读论文,我发现之前的研究者的中论文良性apk与恶性apk的样本,一般是各1000个左右。所以我也是想各收集1000个左右。

2.恶性apk的获取比较棘手,由于其性质没有公开的数据集。经过调研,发现两个可用网站供大家参考:

① AMD网站 ,约有25000个恶性apk样本,需要由学校的导师帮忙发邮件申请,并附上导师个人主页。

② virusshare网站  ,这里面有海量的恶性apk样本,但是需要登陆后才可下载。账号需要邀请注册,由个人给管理员发邮件,说明你是谁,为什么申请账户ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值