【AMPPZ2014】【BZOJ4148】Pillars

Description

给定一个n*m的矩形,其中有f个2*2的障碍物,其中任意两个障碍物中心之间的欧几里得距离至少为6,
且每个障碍物的中心到边缘的距离至少为3。请找到一条从左下角(1,1)出发经过所有没有障碍物的点各
一次的且最后回到左下角的回路。
Input

第一行包含三个整数n,m,f(1<=n,m<=1000且n,m都为偶数)。
接下来f行,每行两个整数x,y(1<=x< n,1<=y< m),表示该障碍物左下角的坐标。
Output

如果无解,输出NIE,否则第一行输出TAK,第二行输出方案。
方案包含n*m-4*f个字符,第i个字符表示第i步的移动方向,用G表示上,D表示下,L表示左,P表示右。
Sample Input

12 6 2

3 3

9 3
Sample Output

TAK

PPPPPPPPPPPGGGLDDLLLLLGPPGLLLDDLLLGGGPPPPPPPPPPGLLLLLLLLLLLDDDDD

HINT
这里写图片描述

Source

鸣谢Claris上传

夏令营卢爷讲过 还是不会做
然而现在只记得他说”乌拉乌拉乌拉”大概当时也只听到了乌拉乌拉乌拉
所以最后翻了WC2015的课件和Claris题解重学了构造
Claris的题解
大致做法就是
首先考虑没有障碍物随便构造一个答案
然后在根据障碍物位置来改把他绕过去就行了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 1010
#define GET (ch>='0'&&ch<='9')
using namespace std;
int n,m,f,x,y;
char a[MAXN][MAXN];
void in(int &x)
{
    char ch=getchar();x=0;
    while (!GET)    ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();
}
int main()
{
    in(n);in(m);in(f);
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)  a[i][j]=i&1?'D':'G';
    for (int i=1;i<=n;i++)
    {
        if (i<n)    a[i][1]='P';
        if (i>1&&(i&1)) a[i][2]='L';
        if (!(i&1)) a[i][m]='L';
    }
    for (int i=1;i<=f;i++)
    {
        in(x);in(y);
        if (x&1)    a[x+1][y-1]='L',a[x][y+2]='P',a[x+1][y+2]='P',a[x+2][y+3]='L';
        else
        {
            if (y==3)   a[x][1]='G',a[x][2]='P',a[x+1][2]='D',a[x+1][y+2]='L';
            else    a[x+1][y+2]='L',a[x][y-1]='P',a[x+1][y-1]='P',a[x+2][y-2]='L';
        }
    }
    puts("TAK");x=1;y=1;
    for (int i=1;i<=n*m-4*f;i++)
    {
        putchar(a[x][y]);
        if (a[x][y]=='L')   x--;
        else
        if (a[x][y]=='P')   x++;
        else
        if (a[x][y]=='D')   y--;
        else
        if (a[x][y]=='G')   y++;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值