【SDOI2014】【BZOJ3531】旅行

Description

S国有N个城市,编号从1到N。城市间用N-1条双向道路连接,满足
从一个城市出发可以到达其它所有城市。每个城市信仰不同的宗教,如飞天面条神教、隐形独角兽教、绝地教都是常见的信仰。为了方便,我们用不同的正整数代表各种宗教, S国的居民常常旅行。旅行时他们总会走最短路,并且为了避免麻烦,只在信仰和他们相同的城市留宿。当然旅程的终点也是信仰与他相同的城市。S国政府为每个城市标定了不同的旅行评级,旅行者们常会记下途中(包括起点和终点)留宿过的城市的评级总和或最大值。
在S国的历史上常会发生以下几种事件:
”CC x c”:城市x的居民全体改信了c教;
”CW x w”:城市x的评级调整为w;
”QS x y”:一位旅行者从城市x出发,到城市y,并记下了途中留宿过的城市的评级总和;
”QM x y”:一位旅行者从城市x出发,到城市y,并记下了途中留宿过
的城市的评级最大值。
由于年代久远,旅行者记下的数字已经遗失了,但记录开始之前每座城市的信仰与评级,还有事件记录本身是完好的。请根据这些信息,还原旅行者记下的数字。 为了方便,我们认为事件之间的间隔足够长,以致在任意一次旅行中,所有城市的评级和信仰保持不变。

Input

输入的第一行包含整数N,Q依次表示城市数和事件数。
接下来N行,第i+l行两个整数Wi,Ci依次表示记录开始之前,城市i的

评级和信仰。
接下来N-1行每行两个整数x,y表示一条双向道路。
接下来Q行,每行一个操作,格式如上所述。

Output

对每个QS和QM事件,输出一行,表示旅行者记下的数字。

Sample Input

5 6

3 1

2 3

1 2

3 3

5 1

1 2

1 3

3 4

3 5

QS 1 5

CC 3 1

QS 1 5

CW 3 3

QS 1 5

QM 2 4

Sample Output

8

9

11

3

HINT

N,Q < =10^5 , C < =10^5

数据保证对所有QS和QM事件,起点和终点城市的信仰相同;在任意时

刻,城市的评级总是不大于10^4的正整数,且宗教值不大于C。

Source

Round 1 Day 1

本来想资瓷一下LCT的做法..
但是..
LCT果然是错误的姿势(常数太大T_T)..
速度差点垫底..
听潇爷说这题其实是弱化版..原题只能用LCT?

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 100010
#define GET (ch>='0'&&ch<='9')
#define LL long long
#define MAXINT 0x7fffffff
using namespace std;
int n,m;
int sta[MAXN],top;
int noww[MAXN],nowc[MAXN];
struct splay
{
    int ch[2],fa,val,maxn;
    LL sum;
    bool rev;
}tree[MAXN];
void in(int &x)
{
    char ch=getchar();x=0;
    while (!GET)    ch=getchar();;
    while (GET) x=x*10+ch-'0',ch=getchar();
}
bool is_root(int x) {return tree[tree[x].fa].ch[0]!=x&&tree[tree[x].fa].ch[1]!=x;}
void push_up(int x)
{
    tree[x].maxn=max(tree[x].val,max(tree[tree[x].ch[0]].maxn,tree[tree[x].ch[1]].maxn));
    tree[x].sum=tree[tree[x].ch[0]].sum+tree[tree[x].ch[1]].sum+tree[x].val;
}
void push_down(int x)
{
    if (tree[x].rev)
    {
        tree[tree[x].ch[0]].rev^=1;tree[tree[x].ch[1]].rev^=1;
        swap(tree[x].ch[0],tree[x].ch[1]);tree[x].rev^=1;
    }
}
void rot(int x)
{
    int y=tree[x].fa,z=tree[y].fa,l,r;
    l=(tree[y].ch[1]==x);r=l^1;
    if (!is_root(y))    tree[z].ch[tree[z].ch[1]==y]=x;
    tree[tree[x].ch[r]].fa=y;tree[y].fa=x;tree[x].fa=z;
    tree[y].ch[l]=tree[x].ch[r];tree[x].ch[r]=y;
    push_up(y);push_up(x);
}
void Splay(int x)
{
    sta[++top]=x;
    for (int i=x;!is_root(i);i=tree[i].fa)  sta[++top]=tree[i].fa;
    while (top) push_down(sta[top--]);
    while (!is_root(x))
    {
        int y=tree[x].fa,z=tree[y].fa;
        if (!is_root(y))    {if ((tree[y].ch[0]==x)^(tree[z].ch[0]==y)) rot(x); else    rot(y);}
        rot(x);
    }
}
void access(int x)  {for (int i=0;x;i=x,x=tree[x].fa)   Splay(x),tree[x].ch[1]=i,push_up(x);}
void make_root(int x)   {access(x);Splay(x);tree[x].rev^=1;}
void link(int x,int y)  {make_root(x);tree[x].fa=y;}
void cut(int x,int y)   {make_root(x);access(y);Splay(y);tree[y].ch[0]=tree[x].fa=0;push_up(y);}
void split(int x,int y) {make_root(x);access(y);Splay(y);}
void add(int x,int delta)   {make_root(x);tree[x].val+=delta;tree[x].val=max(tree[x].val,0);push_up(x);}
void remove(int x)  {make_root(x);tree[x].val=0;push_up(x);}
struct Query
{
    int id,opt,x,c,w;
    bool operator <(const Query& a)const    {return c==a.c?(id==a.id?x<a.x:id<a.id):c<a.c;}
    bool operator ==(const Query& a)const   {return opt==0&&a.opt==0&&id>=MAXINT&&a.id==id&&x==a.x;}
}s[MAXN<<3];//0 modify 1 query_sum 2 query_max
int cnt,Top;
LL ans[MAXN<<3];
int main()
{
    in(n);in(m);int u,v;char ch[4];
    for (int i=1;i<=n;i++)
    {
        in(noww[i]);in(nowc[i]);
        s[++cnt]=(Query){0,0,i,nowc[i],noww[i]};s[++cnt]=(Query){MAXINT,0,i,nowc[i],-noww[i]};
    }
    for (int i=1;i<n;i++)   in(u),in(v),link(u,v);
    for (int i=1;i<=m;i++)
    {
        scanf("%s",ch);in(u);in(v);
        if (ch[0]=='C'&&ch[1]=='C')
            s[++cnt]=(Query){++Top,0,u,nowc[u],-noww[u]},
            s[++cnt]=(Query){++Top,0,u,(nowc[u]=v),noww[u]},
            s[++cnt]=(Query){MAXINT,0,u,nowc[u],-noww[u]};
        if (ch[0]=='C'&&ch[1]=='W') s[++cnt]=(Query){++Top,0,u,nowc[u],v-noww[u]},noww[u]=v;
        if (ch[0]=='Q'&&ch[1]=='S') s[++cnt]=(Query){++Top,1,u,nowc[u],v};
        if (ch[0]=='Q'&&ch[1]=='M') s[++cnt]=(Query){++Top,2,u,nowc[u],v};
    }
    sort(s+1,s+cnt+1);cnt=unique(s+1,s+cnt+1)-s-1;
    for (int i=1;i<=cnt;i++)
        if (!s[i].opt)
        {
            if (s[i].id<0x3f3f3f3f) add(s[i].x,s[i].w); else    remove(s[i].x);
        }
        else    split(s[i].x,s[i].w),ans[s[i].id]=s[i].opt==1?tree[s[i].w].sum:tree[s[i].w].maxn;
    for (int i=1;i<=Top;i++)    if (ans[i]) printf("%lld\n",ans[i]);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值