【BZOJ 3531】 [Sdoi2014]旅行

3531: [Sdoi2014]旅行

Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 575 Solved: 303
[Submit][Status][Discuss]
Description

S国有N个城市,编号从1到N。城市间用N-1条双向道路连接,满足
从一个城市出发可以到达其它所有城市。每个城市信仰不同的宗教,如飞天面条神教、隐形独角兽教、绝地教都是常见的信仰。为了方便,我们用不同的正整数代表各种宗教, S国的居民常常旅行。旅行时他们总会走最短路,并且为了避免麻烦,只在信仰和他们相同的城市留宿。当然旅程的终点也是信仰与他相同的城市。S国政府为每个城市标定了不同的旅行评级,旅行者们常会记下途中(包括起点和终点)留宿过的城市的评级总和或最大值。
在S国的历史上常会发生以下几种事件:
”CC x c”:城市x的居民全体改信了c教;
”CW x w”:城市x的评级调整为w;
”QS x y”:一位旅行者从城市x出发,到城市y,并记下了途中留宿过的城市的评级总和;
”QM x y”:一位旅行者从城市x出发,到城市y,并记下了途中留宿过
的城市的评级最大值。
由于年代久远,旅行者记下的数字已经遗失了,但记录开始之前每座城市的信仰与评级,还有事件记录本身是完好的。请根据这些信息,还原旅行者记下的数字。 为了方便,我们认为事件之间的间隔足够长,以致在任意一次旅行中,所有城市的评级和信仰保持不变。

Input

输入的第一行包含整数N,Q依次表示城市数和事件数。
接下来N行,第i+l行两个整数Wi,Ci依次表示记录开始之前,城市i的

评级和信仰。
接下来N-1行每行两个整数x,y表示一条双向道路。
接下来Q行,每行一个操作,格式如上所述。

Output

对每个QS和QM事件,输出一行,表示旅行者记下的数字。

Sample Input

5 6

3 1

2 3

1 2

3 3

5 1

1 2

1 3

3 4

3 5

QS 1 5

CC 3 1

QS 1 5

CW 3 3

QS 1 5

QM 2 4

Sample Output

8

9

11

3

HINT

N,Q < =10^5 , C < =10^5

数据保证对所有QS和QM事件,起点和终点城市的信仰相同;在任意时

刻,城市的评级总是不大于10^4的正整数,且宗教值不大于C。

Source

Round 1 Day 1

树链剖分+动态开结点。

如果没有同一个信仰的限制就是裸的树链剖分了。

我们可以对每一个信仰都建一棵线段树,但是普通方法建线段树就会MLE。

因此我们采用动态开结点的办法:
假设 n=5 ,我们要在线段树中加入一个 id=4 的人,那么我们只需要开”4-5”这个结点,而不用开”1-3”的结点,因为开了也没用。

在最坏情况下,每个人都属于不同的信仰,我们对于每个信仰开一棵线段树,也只需要 nlogn 个节点了~

然后就是裸的树链剖分了。

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#define M 100005
using namespace std;
int id[M],n,now,q,h[M],tote=0,tot=0,fa[M],size[M],son[M],dep[M],top[M];
int root[M];
struct data
{
    int c,w;
}a[M];
struct Segtree
{
    int l,r,ma,sum;
}t[8000005];
struct edge
{
    int y,ne;
}e[M*2];
void Addedge(int x,int y)
{
    e[++tote].y=y;
    e[tote].ne=h[x];
    h[x]=tote;
}
void dfs1(int x,int f,int de)
{
    dep[x]=de;
    size[x]=1;
    son[x]=0;
    fa[x]=f;
    for (int i=h[x];i;i=e[i].ne)
    {
        int y=e[i].y;
        if (y==f) continue;
        dfs1(y,x,de+1);
        size[x]+=size[y];
        if (size[son[x]]<size[y])
            son[x]=y;
    }
}
void dfs2(int x,int tp)
{
    top[x]=tp;
    id[x]=++now;
    if (son[x]) dfs2(son[x],tp);
    for (int i=h[x];i;i=e[i].ne)
    {
        int y=e[i].y;
        if (y==son[x]||y==fa[x]) continue;
        dfs2(y,y);
    }
}
void Push_up(int x)
{
    t[x].ma=max(t[t[x].l].ma,t[t[x].r].ma);
    t[x].sum=t[t[x].l].sum+t[t[x].r].sum;
}
void Build(int &x,int l,int r,int p,int v)
{
    if (!x) x=++tot;
    if (l==r)
    {
        t[x].sum=t[x].ma=v;
        return;
    }
    int m=(l+r)>>1;
    if (p<=m) Build(t[x].l,l,m,p,v);
    else Build(t[x].r,m+1,r,p,v);
    Push_up(x);
}
int Getsum(int x,int lt,int rt,int l,int r)
{
    if (!x) return 0;
    if (l<=lt&&rt<=r) return t[x].sum;
    int m=(lt+rt)>>1;
    int ans=0;
    if (l<=m) ans+=Getsum(t[x].l,lt,m,l,r);
    if (r>m) ans+=Getsum(t[x].r,m+1,rt,l,r);
    return ans;
}
int Qsum(int x,int y)
{
    int C=a[x].c;
    int tp1=top[x],tp2=top[y];
    int ans=0;
    while (tp1!=tp2)
    {
        if (dep[tp1]<dep[tp2])
            swap(tp1,tp2),swap(x,y);
        ans+=Getsum(root[C],1,n,id[tp1],id[x]);
        x=fa[tp1];
        tp1=top[x];
    }
    if (x==y) return ans+(a[x].c==C)*a[x].w;
    if (dep[x]>dep[y]) swap(x,y);
    ans+=Getsum(root[C],1,n,id[x],id[y]);
    return ans;
}
int Getmax(int x,int lt,int rt,int l,int r)
{
    if (!x) return 0;
    if (l<=lt&&rt<=r) return t[x].ma;
    int m=(lt+rt)>>1;
    int ans=0;
    if (l<=m) ans=Getmax(t[x].l,lt,m,l,r);
    if (r>m) ans=max(ans,Getmax(t[x].r,m+1,rt,l,r));
    return ans;
}
int Qmax(int x,int y)
{
    int C=a[x].c;
    int tp1=top[x],tp2=top[y];
    int ans=0;
    while (tp1!=tp2)
    {
        if (dep[tp1]<dep[tp2])
            swap(tp1,tp2),swap(x,y);
        ans=max(ans,Getmax(root[C],1,n,id[tp1],id[x]));
        x=fa[tp1];
        tp1=top[x];
    }
    if (x==y) return max(ans,(a[x].c==C)*a[x].w);
    if (dep[x]>dep[y]) swap(x,y);
    ans=max(ans,Getmax(root[C],1,n,id[x],id[y]));
    return ans;
}
int main()
{
    now=0;
    scanf("%d%d",&n,&q);
    for (int i=1;i<=n;i++)
        scanf("%d%d",&a[i].w,&a[i].c);
    for (int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        Addedge(x,y);
        Addedge(y,x);
    }
    dfs1(1,0,1);
    dfs2(1,0);
    for (int i=1;i<=n;i++)
        Build(root[a[i].c],1,n,id[i],a[i].w);
    while (q--)
    {
        char s[5];
        int x,y;
        scanf("%s",s);
        scanf("%d%d",&x,&y);
        if (s[0]=='C')
        {
            if (s[1]=='C')
            {
                Build(root[a[x].c],1,n,id[x],0);
                a[x].c=y;
                Build(root[a[x].c],1,n,id[x],a[x].w);
            }
            else
            {
                a[x].w=y;
                Build(root[a[x].c],1,n,id[x],a[x].w);
            }
        }
        else
        {
            if (s[1]=='S')
                printf("%d\n",Qsum(x,y));
            else printf("%d\n",Qmax(x,y));
        }
    }
    return 0;
}

这里写图片描述
感悟:
这道题调了好久,因为树链剖分返回的时候没有判断最后一个点是否是与起点属于同一个信仰的。。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值