【SDOI2010】【BZOJ1941】Hide and Seek

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CreationAugust/article/details/51231968

Description

小猪iPig在PKU刚上完了无聊的猪性代数课,天资聪慧的iPig被这门对他来说无比简单的课弄得非常寂寞,为了消除寂寞感,他决定和他的好朋友giPi(鸡皮)玩一个更加寂寞的游戏—捉迷藏。 但是,他们觉得,玩普通的捉迷藏没什么意思,还是不够寂寞,于是,他们决定玩寂寞无比的螃蟹版捉迷藏,顾名思义,就是说他们在玩游戏的时候只能沿水平或垂直方向走。一番寂寞的剪刀石头布后,他们决定iPig去捉giPi。由于他们都很熟悉PKU的地形了,所以giPi只会躲在PKU内n个隐秘地点,显然iPig也只会在那n个地点内找giPi。游戏一开始,他们选定一个地点,iPig保持不动,然后giPi用30秒的时间逃离现场(显然,giPi不会呆在原地)。然后iPig会随机地去找giPi,直到找到为止。由于iPig很懒,所以他到总是走最短的路径,而且,他选择起始点不是随便选的,他想找一个地点,使得该地点到最远的地点和最近的地点的距离差最小。iPig现在想知道这个距离差最小是多少。 由于iPig现在手上没有电脑,所以不能编程解决这个如此简单的问题,所以他马上打了个电话,要求你帮他解决这个问题。iPig告诉了你PKU的n个隐秘地点的坐标,请你编程求出iPig的问题。

Input

第一行输入一个整数N 第2~N+1行,每行两个整数X,Y,表示第i个地点的坐标

Output

一个整数,为距离差的最小值。

Sample Input

4

0 0

1 0

0 1

1 1

Sample Output

1

HINT

对于30%的数据,N<=1000 对于100%的数据,N<=500000,0<=X,Y<=10^8 保证数据没有重点保证N>=2

Source

SDOI2010 第二轮Day 1

对每个点找一个最远点,直接kdtree
分治应该也可以

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define Dnum 2
#define MAXN 500010
#define MAXINT 0x3f3f3f3f
#define GET (ch>='0'&&ch<='9')
using namespace std;
inline void in(int &x)
{
    char ch=getchar();x=0;int flag=1;
    while (!GET)    flag=ch=='-'?-1:1,ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();x*=flag;
}
int n,root,ans=MAXINT,tmp;
bool cmp_d;
int x[MAXN],y[MAXN];
struct KDtree
{
    int ch[2],d[Dnum],minn[Dnum],maxn[Dnum];
    inline void init()  {   for (int i=0;i<Dnum;++i)    minn[i]=maxn[i]=d[i];   }
    inline bool operator < (const KDtree& a)const   {   return d[cmp_d]<a.d[cmp_d]; }
}tree[MAXN],qnode;
inline void push_up(int rt)
{
    for (int x=0,i=0;i<2;++i)
        if ((x=tree[rt].ch[i]))
            for (int j=0;j<Dnum;++j)
                tree[rt].minn[j]=min(tree[rt].minn[j],tree[x].minn[j]),
                tree[rt].maxn[j]=max(tree[rt].maxn[j],tree[x].maxn[j]);
}
int rebuild(int l=1,int r=n,bool d=0)
{
    cmp_d=d;int mid=(l+r)>>1;nth_element(tree+l,tree+mid,tree+r+1);
    tree[mid].init();
    if (l!=mid) tree[mid].ch[0]=rebuild(l,mid-1,d^1);
    if (r!=mid) tree[mid].ch[1]=rebuild(mid+1,r,d^1);
    return push_up(mid),mid;
}
inline int ask_max(int rt)
{
    int ret=0;
    for (int i=0;i<Dnum;++i)    ret+=max(abs(qnode.d[i]-tree[rt].maxn[i]),abs(qnode.d[i]-tree[rt].minn[i]));
    return ret;
}
inline int ask_min(int rt)
{
    int ret=0;
    for (int i=0;i<Dnum;++i)    ret+=max(tree[rt].minn[i]-qnode.d[i],0),ret+=max(qnode.d[i]-tree[rt].maxn[i],0);
    return ret;
}
inline int dis(const KDtree a,const KDtree b)   {   return abs(a.d[0]-b.d[0])+abs(a.d[1]-b.d[1]);   }
void query_max(int rt=root)
{
    tmp=max(tmp,dis(tree[rt],qnode));
    int l=tree[rt].ch[0],r=tree[rt].ch[1],disl=l?ask_max(l):-MAXINT,disr=r?ask_max(r):-MAXINT;
    if (disl>disr)
    {
        if (disl>tmp)   query_max(l);
        if (disr>tmp)   query_max(r);
    }
    else
    {
        if (disr>tmp)   query_max(r);
        if (disl>tmp)   query_max(l);
    }
}
void query_min(int rt=root)
{
    int Dis=dis(tree[rt],qnode);if (Dis)    tmp=min(tmp,Dis);
    int l=tree[rt].ch[0],r=tree[rt].ch[1],disl=l?ask_min(l):MAXINT,disr=r?ask_min(r):MAXINT;
    if (disl<disr)
    {
        if (disl<tmp)   query_min(l);
        if (disr<tmp)   query_min(r);
    }
    else
    {
        if (disr<tmp)   query_min(r);
        if (disl<tmp)   query_min(l);
    }
}
int query(bool d,int x,int y)
{
    qnode.d[0]=x;qnode.d[1]=y;
    if (d)  tmp=-MAXINT,query_max();
    else    tmp=MAXINT,query_min();
    return tmp;
}
int main()
{
    in(n);ans=MAXINT;
    for (int i=1;i<=n;i++)  in(x[i]),in(y[i]),tree[i].d[0]=x[i],tree[i].d[1]=y[i];
    root=rebuild();
    for (int i=1;i<=n;i++)
    {
        int minn=query(0,x[i],y[i]),maxn=query(1,x[i],y[i]);
        ans=min(ans,maxn-minn);
    }
    printf("%d\n",ans);
}
阅读更多

没有更多推荐了,返回首页