3.24 每日一题 面试题 17.16. 按摩师
题目:
一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。
示例 3:
输入: [2,1,4,5,3,1,1,3]
输出: 12
解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。
解法:
动态规划,dp[i]
为轮到第i个客户时的最大时长,dp[i] = max(dp[i-1],dp[i-2]+nums[i])
public int massage(int[] nums) {
//动态规划 dp[i]为第i个客人时的最大时长
if(nums.length == 0 || nums == null) return 0;
if(nums.length == 1) return nums[0];
if(nums.length == 2) return Math.max(nums[0], nums[1]);
int[] dp = new int[nums.length];
int n = dp.length;
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for(int i = 2; i < n; i++) {
dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i]);
}
return dp[n-1];
}
3.25 每日一题 892. 三维形体的表面积
题目:
在 N * N 的网格上,我们放置一些 1 * 1 * 1 的立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在对应单元格 (i, j) 上。
请你返回最终形体的表面积。
示例 1:
输入:[[2]]
输出:10
示例 2:
输入:[[1,2],[3,4]]
输出:34
示例 3:
输入:[[1,0],[0,2]]
输出:16
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]]
输出:32
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]]
输出:46
提示:
1 <= N <= 50
0 <= grid[i][j] <= 50
解法:
对于一个空格,如果有n个立方体叠加,贡献的表面积为上下两个面+每个立方体的4个面,即2+n*4
。对于旁边的空格,如果立方体个数m小于n,表面积-m;如果m大于等于n,表面积-n。遍历每个空格。
public int surfaceArea(int[][] grid) {
int ans = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[i].length; j++) {
if (grid[i][j] == 0) {
continue;
} else {
ans += surfaceArea(grid, i, j);
}
}
}
return ans;
}
public int surfaceArea(int[][] grid, int i, int j) {
int v = grid[i][j];
int ans = 0;
if (v == 1)
ans = 6;
if (v > 1)
ans = 10 + (v - 2) * 4;
// 上
if (i - 1 >= 0) {
int vUp = grid[i - 1][j];
if (vUp >= v) {
ans -= v;
} else {
ans -= vUp;
}
}
// 下
if (i + 1 < grid.length) {
int vDown = grid[i + 1][j];
if (vDown >= v) {
ans -= v;
} else {
ans -= vDown;
}
}
// 左
if (j - 1 >= 0) {
int vLeft = grid[i][j-1];
if (vLeft >= v) {
ans -= v;
} else {
ans -= vLeft;
}
}
// 右
if (j + 1 < grid[i].length) {
int vRight = grid[i][j+1];
if (vRight >= v) {
ans -= v;
} else {
ans -= vRight;
}
}
return ans;
}
3.26每日一题 999. 可以被一步捕获的棋子数
题目:
在一个 8 x 8 的棋盘上,有一个白色的车(Rook),用字符 ‘R’ 表示。棋盘上还可能存在空方块,白色的象(Bishop)以及黑色的卒(pawn),分别用字符 ‘.’,‘B’ 和 ‘p’ 表示。不难看出,大写字符表示的是白棋,小写字符表示的是黑棋。
车按国际象棋中的规则移动。东,西,南,北四个基本方向任选其一,然后一直向选定的方向移动,直到满足下列四个条件之一:
棋手选择主动停下来。
棋子因到达棋盘的边缘而停下。
棋子移动到某一方格来捕获位于该方格上敌方(黑色)的卒,停在该方格内。
车不能进入/越过已经放有其他友方棋子(白色的象)的方格,停在友方棋子前。
你现在可以控制车移动一次,请你统计有多少敌方的卒处于你的捕获范围内(即,可以被一步捕获的棋子数)。
解法:找到车后遍历四个方向即可。
public int numRookCaptures(char[][] board) {
int ans = 0;
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board[i].length; j++) {
if(board[i][j] == 'R') {
ans = numRookCaptures(board, i, j);
}
}
}
return ans;
}
private int numRookCaptures(char[][] board, int i, int j) {
int ans = 0;
//左
for(int m = j-1; m >= 0; m--) {
if(board[i][m] == 'p') {
ans += 1;
break;
}
if(board[i][m] == 'B') {
break;
}
}
//右
for(int m = j+1; m < board.length; m++) {
if(board[i][m] == 'p') {
ans += 1;
break;
}
if(board[i][m] == 'B') {
break;
}
}
//上
for(int n = i-1; n >= 0; n--) {
if(board[n][j] == 'p') {
ans += 1;
break;
}
if(board[n][j] == 'B') {
break;
}
}
//下
for(int n = i+1; n <= 7; n++) {
if(board[n][j] == 'p') {
ans += 1;
break;
}
if(board[n][j] == 'B') {
break;
}
}
return ans;
}
3.27每日一题 914. 卡牌分组
给定一副牌,每张牌上都写着一个整数。
此时,你需要选定一个数字 X,使我们可以将整副牌按下述规则分成 1 组或更多组:
每组都有 X 张牌。
组内所有的牌上都写着相同的整数。
仅当你可选的 X >= 2 时返回 true。
示例 1:
输入:[1,2,3,4,4,3,2,1]
输出:true
解释:可行的分组是 [1,1],[2,2],[3,3],[4,4]
示例 2:
输入:[1,1,1,2,2,2,3,3]
输出:false
解释:没有满足要求的分组。
示例 3:
输入:[1]
输出:false
解释:没有满足要求的分组。
示例 4:
输入:[1,1]
输出:true
解释:可行的分组是 [1,1]
示例 5:
输入:[1,1,2,2,2,2]
输出:true
解释:可行的分组是 [1,1],[2,2],[2,2]
提示:
1 <= deck.length <= 10000
0 <= deck[i] < 10000
解法:
由于数组的值小于10000,可以使用长度为10000的数组记录每个数字出现的次数,使用变量max记录数组中的最大值优化。问题可以转换为每个数字出现的次数是否有大于1的公约数。
public boolean hasGroupsSizeX(int[] deck) {
if(deck.length == 1) return false;
int[] count = new int[10001];
int max = -1;
//记录每个数字出现的次数和数组的最大值
for(int i = 0; i < deck.length; i++) {
count[deck[i]]++;
max = Math.max(max, deck[i]);
}
int g = 0;
for(int i = 0; i <= max; i++) {
if(count[i] > 0) {
if(g == 1) return false;
if(g == -1) {
g = count[i];
}else {
g = gcd(count[i], g);
}
}
}
return g >= 2;
}
public int gcd(int a, int b) {
if(b == 0) return a;
return gcd(b,a%b);
}