命题逻辑的基本概念


我们把 L 0 \mathscr{L}_0 L0所有命题变号的集合记作 Pr,并且把命题编号依照下标的序 p 0 , p 1 , p 2 , ⋯ p_0,p_1,p_2,\cdots p0,p1,p2,称为 Pr上的(或命题变号的)“字典顺序”或者“字母表”。

真值指派和公式真值

语言 L 0 \mathscr{L}_0 L0的解释叫做 “真值指派”(truth valuation, truth assignment)

一个真值指派(或赋值)是从Pr到{T,F}的函数 σ \sigma σ,他对每个命题变号指派一个真值 σ ( p ) \sigma(p) σ(p)

其实也就是将一个基本命题映射到T或者F上。

真理定义

对所有的 L 0 \mathscr{L}_0 L0-公式 ϕ \phi ϕ,我们用 ϕ σ \phi^{\sigma} ϕσ表示 ϕ \phi ϕ σ \sigma σ下的值。对于 ϕ σ \phi^{\sigma} ϕσ递归的定义如下:
p n σ = T  iff  σ ( p n ) = T ( n ⩾ 0 ) ( ∼ ψ ) σ = T  iff  ψ σ ≠ T (  即  ψ σ = F ) ( ψ ∨ χ ) σ = T  iff   或者  ψ σ = T  或者  χ σ = T ( ψ ∧ χ ) σ = T  iff  ψ σ = T  并且  χ σ = T ( ψ → χ ) σ = T  iff 或者  ψ σ ≠ T  或者  χ σ = T ( ψ ↔ χ ) σ = T  iff  ψ σ = χ σ \begin{aligned} &p_{n}^{\sigma}=\mathrm{T} \text { iff } \sigma\left(p_{n}\right)=\mathrm{T}(n \geqslant 0)\\ &(\sim \psi)^{\sigma}=\mathrm{T} \text { iff } \psi^{\sigma} \neq \mathrm{T} \quad\left(\text { 即 } \psi^{\sigma}=\mathrm{F}\right)\\ &(\psi \vee \chi)^{\sigma}=\mathrm{T} \quad \text { iff } \quad \text { 或者 } \psi^{\sigma}=\mathrm{T} \text { 或者 } \chi^{\sigma}=\mathrm{T}\\ &(\psi \wedge \chi)^{\sigma}=\mathrm{T} \text { iff } \psi^{\sigma}=\mathrm{T} \text { 并且 } \chi^{\sigma}=\mathrm{T}\\ &(\psi \rightarrow \chi)^{\sigma}=\mathrm{T} \text { iff 或者 } \psi^{\sigma} \neq \mathrm{T} \text { 或者 } \chi^{\sigma}=\mathrm{T}\\ &(\psi \leftrightarrow \chi)^{\sigma}=\mathrm{T} \text { iff } \psi^{\sigma}=\chi^{\sigma} \end{aligned} pnσ=T iff σ(pn)=T(n0)(ψ)σ=T iff ψσ=T(  ψσ=F)(ψχ)σ=T iff  或者 ψσ=T 或者 χσ=T(ψχ)σ=T iff ψσ=T 并且 χσ=T(ψχ)σ=T iff 或者 ψσ=T 或者 χσ=T(ψχ)σ=T iff ψσ=χσ

我们把确定公式真值的定义通常称作真理定义。对于上述定义,有如下说明:

  • 关于 ϕ σ \phi^\sigma ϕσ的另一种等价的说法是把真值指派 σ \sigma σ扩充称一个满足上述条件的从 L 0 \mathscr{L}_0 L0-公式集到{T,F}的函数。
  • 由于真值指派就像是被指派为真的命题变号集合的特征函数, 人们常常把真值指派 σ \sigma σ 直接定义为 P r \mathrm{Pr} Pr 的一个子集, 亦即 σ ⊆ Pr ⁡ \sigma \subseteq \operatorname{Pr} σPr (或 者 σ ∈ P ( P r ) ) 2 \sigma \in \mathscr{P}(\mathbf{P r}))^{2} σP(Pr))2, 而把 ϕ σ \phi^{\sigma} ϕσ 递归定义的第一行也相应地改为 “ p n σ = T p_{n}^{\sigma}=\mathrm{T} pnσ=T iff p n ∈ σ ( n ⩾ 0 ) p_{n} \in \sigma(n \geqslant 0) pnσ(n0)"
  • 可以用“如果 ψ σ = T \psi^\sigma=T ψσ=T,那么 χ σ = T \chi^\sigma=T χσ=T”代替第五行中的条件。

这里特征函数是指:

对任意集合X及其任意子集Y,从X到{0,1}的函数f是Y的特征函数当且仅当对每个x∈X,如果x∈Y则f(x)= 1,并且如果x ∉ \notin /Y则f(x)=0。很多作者喜欢用1代替真值T并且用0代替
真值F。在这种情况下,真值指派就成了真命题变号集合的特征函数。

上面的定义说明了一个真值指派下各个公式的值,而下面的“满足”定义说的是一个真值指派满足一个公式集合,当且仅当它使得该集合中的所有公式为真。

Γ \Gamma Γ 为任意 L 0 \mathscr{L}_{0} L0 -公式集 (可以是无穷集), 并令 σ \sigma σ 为任意真值指 派。 σ \sigma σ 满足 Γ (  符号表示:  σ ⊨ Γ ) \Gamma(\text { 符号表示: } \sigma \vDash \Gamma) Γ( 符号表示σΓ) 当且仅当对每个 ϕ ∈ Γ , ϕ σ = T ∘ \phi \in \Gamma, \phi^{\sigma}=\mathrm{T}_{\circ} ϕΓ,ϕσ=T 我们用 σ ⊨ ϕ \sigma \vDash \phi σϕ 表示 σ ⊨ { ϕ } \sigma \vDash\{\phi\} σ{ϕ}, 并用 σ ⊭ Γ \sigma \not \models \Gamma σΓ σ ⊨ ϕ \sigma \models \phi σϕ 分别表示 σ ⊨ Γ \sigma \vDash \Gamma σΓ σ ⊨ ϕ \sigma \vDash \phi σϕ 不成立。

由上述定义可知下列等值式成立:

  • σ ⊨ ϕ \sigma \vDash \phi σϕ 当且仅当 ϕ σ = T \phi^{\sigma}=\mathrm{T} ϕσ=T;
  • σ ≠ ϕ \sigma \neq \phi σ=ϕ 当且仅当 ϕ σ = F ; \phi^{\sigma}=\mathrm{F} ; ϕσ=F;
  • σ ⊨ Γ \sigma \vDash \Gamma σΓ 当且仅当对所有 ϕ ∈ Γ , σ ⊨ ϕ \phi \in \Gamma, \sigma \vDash \phi ϕΓ,σϕ;
  • σ ⊭ Γ \sigma \not \models \Gamma σΓ 当且仅当对某些 ϕ ∈ Γ , σ ⊭ ϕ 。  \phi \in \Gamma, \sigma \not \models \phi_{\text {。 }} ϕΓ,σϕ 

对于任何真值指派, σ ⊨ ∅ \sigma \models \empty σ。因为空机重不存在公式 ϕ \phi ϕ使得 σ ⊭ ϕ \sigma \not\models \phi σϕ,也就是说,对于每一个 ϕ ∈ ∅ , σ ⊨ ϕ \phi \in \empty,\sigma \models \phi ϕ,σϕ

重言蕴含、重言等值和可满足性

重言蕴含

Γ \Gamma Γ 为任意 L 0 \mathscr{L}_{0} L0 -公式集 (可以是无穷集) 并且 ϕ \phi ϕ 为任意 L 0 \mathscr{L}_{0} L0 -公 式。 Γ \Gamma Γ 重言蕴涵 ϕ ( \phi\left(\right. ϕ( 符号表示: Γ ⊨ 0 ϕ \Gamma \vDash_{0} \phi Γ0ϕ ) 当且仅当对每一个真值指派 σ \sigma σ, 如果 σ ⊨ Γ \sigma \vDash \Gamma σΓ σ ⊨ ϕ ∘ ϕ \sigma \vDash \phi_{\circ} \phi σϕϕ Γ \Gamma Γ 的重言后承当且仅当 Γ ⊨ 0 ϕ \Gamma \vDash_{0} \phi_{\text {}} Γ0ϕ

Δ = { ψ 1 , … , ψ n } \Delta=\left\{\psi_{1}, \ldots, \psi_{n}\right\} Δ={ψ1,,ψn} 时,我们用 ψ 1 , … , ψ n ⊨ 0 ϕ \psi_{1}, \ldots, \psi_{n} \vDash_{0} \phi ψ1,,ψn0ϕ 表示 Δ ⊨ 0 ϕ \Delta \vDash_{0} \phi Δ0ϕ, 用 Γ , ψ 1 , … , ψ n ⊨ 0 ϕ \Gamma, \psi_{1}, \ldots, \psi_{n} \vDash_{0} \phi Γ,ψ1,,ψn0ϕ 表示 Γ ∪ Δ ⊨ 0 ϕ ∘ \Gamma \cup \Delta \vDash_{0} \phi_{\circ} ΓΔ0ϕ Δ = ∅ ( \Delta=\varnothing( Δ=( 空集 ) ) ) 时, 我们用 ⊨ 0 ϕ \vDash_{0} \phi 0ϕ
Δ ⊨ 0 ϕ ॰  \Delta \vDash_{0} \phi_{\text {॰ }} Δ0ϕ 

这里与真值表刻画不同点主要有两个:

  • 真值表刻画中, Γ \Gamma Γ被设定为有穷集合。
  • 真值表刻画中,只考虑给定公式出现的有穷个命题变号的真假,命题变号的可能取值也只有有穷多个。

重言等值

L 0 \mathscr{L}_{0} L0 -公式 ϕ \phi ϕ ψ \psi ψ 重言等值当且仅当对每个真值指派 σ , ϕ σ = ψ σ \sigma, \phi^{\sigma}=\psi^{\sigma} σ,ϕσ=ψσ

易见: 如果 ϕ \phi ϕ ψ \psi ψ 重言等值, 那么对每个真值指派 σ , σ ⊨ ϕ \sigma, \sigma \vDash \phi σ,σϕ 当且仅着 σ ⊨ ψ ; \sigma \vDash \psi ; σψ; 反之亦然。

可满足

Γ \Gamma Γ 为任意 L 0 \mathscr{L}_{0} L0 -公式集 (可以是无穷集), ϕ \phi ϕ 为任意 L 0 \mathscr{L}_{0} L0 -公式。 Γ \Gamma Γ 是可满足的当且仅当存在一个真值指派 σ \sigma σ 使得 σ ⊨ Γ ; ϕ \sigma \vDash \Gamma ; \phi σΓ;ϕ 是可满足的当且仅 当 { ϕ } \{\phi\} {ϕ} 是可满足的。 Γ ( \Gamma( Γ( ϕ ) \phi) ϕ) 是不可满足的当且仅当它不是可满足的。

重言式、矛盾式与或然式

重言式

对任意 L 0 \mathscr{L}_{0} L0 -公式 ϕ , ϕ \phi, \phi ϕ,ϕ 是重言式当且仅当对每一个真值指派
σ , σ ⊨ ϕ ∘ \sigma, \sigma \vDash \phi_{\circ} σ,σϕ

矛盾式

对任意 L 0 \mathscr{L}_{0} L0 -公式 ϕ , ϕ \phi, \phi ϕ,ϕ 是矛盾式 ( ( ( 或不可满足式) 当且仅当对每一个真值指派 σ , σ ⊭ ϕ ∘ \sigma, \sigma \not \models \phi_{\circ} σ,σϕ

似然式

对任意 L 0 \mathscr{L}_{0} L0 -公式 ϕ , ϕ \phi, \phi ϕ,ϕ 是或然式当且仅当存在一个真值指派 σ \sigma σ 使得 σ ⊨ ϕ \sigma \vDash \phi σϕ, 并且存在一个真值指派 σ ′ \sigma^{\prime} σ, 使得 σ ′ ⊭ ϕ ∘ \sigma^{\prime} \not \models \phi_{\circ} σϕ

代入

代入(substitution)是对公式做变形处理的一种方式,在这里,代入总是指对命题变号的带入。

直观说明

ϕ \phi ϕ ψ \psi ψ为任意公式, p p p为任意命题变项。用 ψ \psi ψ代入 ϕ \phi ϕ中的p,是指用 ψ \psi ψ代替p在 ϕ \phi ϕ中的每一处出现,其结果记为 ϕ ( ψ / p ) \phi(\psi / p) ϕ(ψ/p)

比如:

ϕ = p → ∼ p ∨ q \phi=p \rightarrow \sim p \vee q ϕ=ppq
ϕ ( p ∨ q / p ) = p ∨ q → ∼ ( p ∨ q ) ∨ q \phi(p\vee q / p) =p \vee q \rightarrow \sim (p\vee q)\vee q ϕ(pq/p)=pq(pq)q

代入的定义

代入是从命题变号集到公式集的函数。我们用 s , s ′ \mathfrak{s}, \mathfrak{s}^{\prime} s,s 等表示代入。
s \mathfrak{s} s是一个代入,对所有公式 χ \chi χ,公式 χ ( s ) \chi( \mathfrak{s}) χ(s)(对 χ \chi χ做代入 s \mathfrak{s} s 的结果)递归地定义如下:

  • 对所有命题变号 p p p p ( s ) = s ( p ) p(\mathfrak{s})= \mathfrak{s}(p) p(s)=s(p)
  • 对所有公式 ϕ , ( ∼ ϕ ) ( s ) = ∼ ( ϕ ( s ) ) \phi,(\sim \phi)(\mathfrak{s})=\sim(\phi(\mathfrak{s})) ϕ,(ϕ)(s)=(ϕ(s));
  • 对所有公式 ϕ \phi ϕ ψ , ( ϕ ⊙ ψ ) ( s ) = ϕ ( s ) ⊙ ψ ( s ) \psi,(\phi \odot \psi)(\mathfrak{s})=\phi(\mathfrak{s}) \odot \psi(\mathfrak{s}) ψ,(ϕψ)(s)=ϕ(s)ψ(s), 其中 ⊙ ∈ { ∧ , ∨ , → , ↔ } \odot \in\{\wedge, \vee, \rightarrow,\leftrightarrow \} {,,,}

有穷代入:

设代入 s \mathfrak{s} s 满足 s ( q 0 ) = ψ 0 , … , s ( q n ) = ψ n \mathfrak{s}\left(q_{0}\right)=\psi_{0}, \ldots, \mathfrak{s}\left(q_{n}\right)=\psi_{n} s(q0)=ψ0,,s(qn)=ψn, 并且 s ( r ) = r \mathfrak{s}(r)=r s(r)=r 对所有不是 q 0 , … , q n q_{0}, \ldots, q_{n} q0,,qn 的命题变号 r r r 都成立。我们用 ψ 0 / q 0 , … , ψ n / q n \psi_{0} / q_{0}, \ldots, \psi_{n} / q_{n} ψ0/q0,,ψn/qn 表示这个 s \mathfrak{s} s,用 ϕ ( ψ 0 / q 0 , … , ψ n / q n ) \phi\left(\psi_{0} / q_{0}, \ldots, \psi_{n} / q_{n}\right) ϕ(ψ0/q0,,ψn/qn) 来表示 ϕ ( s ) \phi(\mathfrak{s}) ϕ(s), 并且称 s \mathfrak{s} s 为有穷代入。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值