真值表和真值计算

基本真值表

从语法角度讲,联结词是“公式函数”,即从公式集合到公式集合的函数。也就是说,对于每个联结词,每当给出公式作为输入,这个联结词确定了唯一的公式作为输出。
真值函数是从真值集到真值集的函数,也即从{T,F}到{T,F}的函数。

基本真值表如下:
在这里插入图片描述
我们可以用如下规则进行记忆:

  • 一个否定式是真的,当且仅当它否定的公式是假的;
  • 一个合取式是真的,当且仅当它的合取支都是真的;
  • 一个析取式是真的,当且仅当它的析取支中至少有一个是真的;
  • 一个蕴涵式是真的,当且仅当它的前件是假的或后件是真的;
  • 一个等值式是真的,当且仅当它的两个直接子公式的真值相同。

基本语义的真值表刻画

重言蕴含(重言后承)与重言等值

论说形式的有效性

论说形式的前提和结论的联合真值表称为论说形式的真值表。根据真值表,我们可以进行如下描述(“有效”对应“好”,“无效”对应“坏”):

  • 在一个论说形式的真值表中,前提都真而结论假的每一行,都称为该论说形式的反例
  • 对任何一个论说形式,如果其真值表的任何一行都不是该论说形式的反例,那么这个论说形式是有效的(valid); 否则,这个论说形式是无效的(invalid)

比如:
在这里插入图片描述
由于第一行中,结论都为真,而结论为假,所以我们找到了这个论说形式的反例,所以论说形式是无效的。

重言蕴含

ϕ 1 , ⋯   , ϕ n \phi_1,\cdots,\phi_n ϕ1,,ϕn ψ \psi ψ为任意公式。

  • { ϕ 1 , … , ϕ n } ( \left\{\phi_{1}, \ldots, \phi_{n}\right\}\left(\right. {ϕ1,,ϕn}( ϕ 1 , … , ϕ n ) \left.\phi_{1}, \ldots, \phi_{n}\right) ϕ1,,ϕn) 重言蕴含 ψ ( { ϕ 1 , … , ϕ n } \psi\left(\left\{\phi_{1}, \ldots, \phi_{n}\right\}\right. ψ({ϕ1,,ϕn} (tautologically
    implies ψ \psi ψ ) 当且仅当在 ϕ 1 , … , ϕ n \phi_{1}, \ldots, \phi_{n} ϕ1,,ϕn ψ \psi ψ 的联合真值表中,没有一行是 ϕ 1 , … , ϕ n \phi_{1}, \ldots, \phi_{n} ϕ1,,ϕn 都真而 ψ \psi ψ 假, 亦即在它们的联合真值表的每一行中,如果 ϕ 1 , … , ϕ n \phi_{1}, \ldots, \phi_{n} ϕ1,,ϕn, 的真值都是 T \mathrm{T} T, 那么 ψ \psi ψ 的真值也一定是 T \mathrm{T} T
  • ψ \psi ψ { ϕ 1 , … , ϕ n } \left\{\phi_{1}, \ldots, \phi_{n}\right\} {ϕ1,,ϕn} (或 ϕ 1 , … , ϕ n ) \left.\phi_{1}, \ldots, \phi_{n}\right) ϕ1,,ϕn) 的重言后承 (tautological consequence) 当且仅当 { ϕ 1 , … , ϕ n } \left\{\phi_{1}, \ldots, \phi_{n}\right\} {ϕ1,,ϕn} 重言蕴涵 ψ 。  \psi_{\text {。 }} ψ 

即前提都是T的时候,结论一定也是T。

根据重言蕴含的定义,我们可以得到以下两个问题等价:

  • { ϕ 1 , … , ϕ n } \left\{\phi_{1}, \ldots, \phi_{n}\right\} {ϕ1,,ϕn} 重言蕴涵 ψ \psi ψ,
  • ϕ 1 , … , ϕ n \phi_{1}, \ldots, \phi_{n} ϕ1,,ϕn 为前提并以 ψ \psi ψ 为结论的论说形式是有效的。

重言等值

ϕ \phi ϕ ψ \psi ψ 重言等值 (tautologically equivalent) 当且仅当在 ϕ \phi ϕ ψ \psi ψ 的联合真值表的任意一行中, ϕ \phi ϕ ψ \psi ψ 有同样的真值,亦即在它们的联 合真值表的每一行中,如果 ϕ \phi ϕ 的真值是 T \mathrm{T} T, 则 ψ \psi ψ 的真值也是 T \mathrm{T} T; 并 且如果 ϕ \phi ϕ 的真值是 F,则 ψ \psi ψ 的真值也是 F \mathrm{F} F

我们可以得到下列命题等价:

  • ϕ \phi ϕ ψ \psi ψ重言等值
  • ϕ \phi ϕ ψ \psi ψ相互重言蕴含( ϕ \phi ϕ ψ \psi ψ分别是对方的重言后承)

可满足性

可满足性

这里的可满足性其实就是之前所说到的语义一致性。

  • Γ \Gamma Γ为任意有穷的公式集合。 Γ \Gamma Γ可满足的 (satisfiable) 当且仅当 Γ \Gamma Γ 中公式的联合真值表中存在某一行,在该行里 Γ \Gamma Γ中的公式的真值都是 T 。 Γ \mathrm{T}。 \Gamma TΓ 是不可满足的当且仅当它不是可满足的。
  • ϕ \phi ϕ 为任意公式。 ϕ \phi ϕ 是可满足的当且仅当 { ϕ } \{\phi\} {ϕ} 是可满足的。 ϕ \phi ϕ是不可满足的当且仅当 { ϕ } \{\phi\} {ϕ} 不是可满足的。

所谓的可满足也就是存在一组赋值,使得集合里所有公式的值都为T。

可满足性的简单性质和重言蕴含的关系

Γ = { ϕ 0 , ⋯   , ϕ n } \Gamma = \lbrace \phi_0, \cdots,\phi_n \rbrace Γ={ϕ0,,ϕn}为任意有穷公式集, ϕ \phi ϕ为任意公式,我们有:

  • 如果 Γ \Gamma Γ 可满足,那么对任何公式集 Δ , Γ ∩ Δ \Delta, \Gamma \cap \Delta Δ,ΓΔ 也可满足。(直观上想,取交集之后公式更少,公式多都能满足,公式少更能满足)
  • 如果 Γ \Gamma Γ 不可满足,那么对任何公式集 Δ , Γ ∪ Δ \Delta, \Gamma \cup \Delta Δ,ΓΔ 也不可满足。(同理,公式少的时候都不能满足,那公式多更不能满足)
  • Γ ⊆ Δ \Gamma \subseteq \Delta ΓΔ, 其中 Δ \Delta Δ 是任意有穷公式集。如果 Δ \Delta Δ 可满足则 Γ \Gamma Γ 可满 足(如果 Γ \Gamma Γ 不可满足则 Δ \Delta Δ 不可满足)。(同上)
  • Γ ∪ { ∼ ϕ } \Gamma \cup\{\sim \phi\} Γ{ϕ} 不可满足当且仅当 Γ \Gamma Γ 重言蕴涵 ϕ ∘ \phi_{\circ} ϕ(根据重言蕴含的定义,当其他公式都为T是 ϕ \phi ϕ也一定为T)
  • 对任意 i ⩽ n , Γ i \leqslant n, \Gamma in,Γ 不可满足当且仅当 Γ − { ψ i } \Gamma-\left\{\psi_{i}\right\} Γ{ψi} 重言蕴涵 ∼ ψ i \sim \psi_{i} ψi(同上)
  • 如果 Γ \Gamma Γ 不可满足,那么 Γ \Gamma Γ 重言蕴涵 ϕ ∘ \phi_{\circ} ϕ(因为没有每一行都为T的时候)
  • 如果 ∼ ϕ \sim \phi ϕ 不可满足,那么 Γ \Gamma Γ 重言蕴涵 ϕ ∘ \phi_{\circ} ϕ(同上)
  • 如果 Γ \Gamma Γ 重言蕴涵 ϕ \phi ϕ ,并且 Γ \Gamma Γ 可满足,那么 ϕ \phi ϕ 也可满足。(说明 Γ \Gamma Γ中公式为真的时候, ϕ \phi ϕ必为真;那么肯定存在一组赋值能使 ϕ \phi ϕ为真)
  • 如果 Γ \Gamma Γ 重言蕴涵 ϕ \phi ϕ 并且 Γ \Gamma Γ 重言蕴涵 ∼ ϕ \sim \phi ϕ, 那么 Γ \Gamma Γ 不可满足。(假设可满足,那么必然矛盾)

重言式、矛盾式、或然式

  • 公式 ϕ \phi ϕ 是重言式当且仅当在其真值表的每一行中, ϕ \phi ϕ 的真值都是 T \mathrm{T} T, 即 ϕ \phi ϕ 总是真的。
  • 公式 ϕ \phi ϕ 是矛盾式当且仅当在其真值表的每一行中, ϕ \phi ϕ 的真值都是 F, 即 ϕ \phi ϕ 总是假的。(矛盾式也称不可满足式)
  • 公式 ϕ \phi ϕ 是或然式 ( ( ( 偶然式)当且仅当在其真值表中, ϕ \phi ϕ 的真值在某 些行中是 T \mathrm{T} T, 而在另一些行中是 F \mathrm{F} F, 即 ϕ \phi ϕ 有时真有时假
三者之间的关系
  • 重言式的否定是矛盾式。
  • 矛盾式的否定是重言式。
  • 或然式的否定还是或然式。
  • 重言式与重言式的合取是重言式。
  • 重言式与矛盾式的合取是矛盾式。
  • 重言式与或然式的合取是或然式。
  • 矛盾式与矛盾式的合取是矛盾式。
  • 矛盾式与或然式的合取是矛盾式。
  • 或然式与或然式的合取或者是或然式,或者是矛盾式。

各语义之间的关系

ϕ , ψ , ϕ 0 , ⋯   , ϕ n \phi,\psi,\phi_0, \cdots,\phi_n ϕ,ψ,ϕ0,,ϕn为任意公式,且 Γ = { ϕ 0 , ⋯   , ϕ n } \Gamma = \lbrace \phi_0, \cdots,\phi_n \rbrace Γ={ϕ0,,ϕn}

  • ϕ \phi ϕ 重言蕴含 ψ \psi ψ 当且仅当 ϕ → ψ \phi \rightarrow \psi ϕψ 是重言式;(这里 ϕ \phi ϕ是指的公式,而不是变元,是多个变元组成的公式)
  • ϕ \phi ϕ 重言等值于 ψ \psi ψ 当且仅当 ϕ ↔ ψ \phi \leftrightarrow \psi ϕψ 是重言式,当且仅当 ψ → ϕ \psi \rightarrow \phi ψϕ ϕ → ψ \phi \rightarrow \psi ϕψ 都是重言式;
  • Γ \Gamma Γ 重言蕴涵 ψ \psi ψ 当且仅当 ϕ 0 ∧ ⋯ ∧ ϕ n → ψ \phi_{0} \wedge \cdots \wedge \phi_{n} \rightarrow \psi ϕ0ϕnψ 是重言式;
  • ϕ 0 ∧ ⋯ ∧ ϕ n → ψ \phi_{0} \wedge \cdots \wedge \phi_{n} \rightarrow \psi ϕ0ϕnψ ϕ 0 ∧ ⋯ ∧ ϕ n − 1 → ( ϕ n → ψ ) \phi_{0} \wedge \cdots \wedge \phi_{n-1} \rightarrow\left(\phi_{n} \rightarrow \psi\right) ϕ0ϕn1(ϕnψ) 重言等值;
  • 如果 ϕ \phi ϕ 是重言式,那么 Γ \Gamma Γ 重言蕴涵 ϕ \phi ϕ;
  • Γ \Gamma Γ 可满足当且仅当 ϕ 0 ∧ ⋯ ∧ ϕ n \phi_{0} \wedge \cdots \wedge \phi_{n} ϕ0ϕn 或者是或然式或者是重言式;
  • Γ \Gamma Γ 不可满足当且仅当 ϕ 0 ∧ ⋯ ∧ ϕ n \phi_{0} \wedge \cdots \wedge \phi_{n} ϕ0ϕn 是矛盾式;
  • 如果 ϕ \phi ϕ 是重言式, 那么 Γ \Gamma Γ 是可满足的当且仅当 Γ ∪ { ϕ } \Gamma \cup\{\phi\} Γ{ϕ} 是可满足的;
  • 如果 ϕ i ( i ⩽ n ) \phi_{i}(i \leqslant n) ϕi(in) 是重言式,那么 Γ \Gamma Γ 是可满足的当且仅当 Γ − { ϕ i } \Gamma-\left\{\phi_{i}\right\} Γ{ϕi}是可满足的; 如果 ϕ \phi ϕ 是矛盾式,那么 Γ ∪ { ϕ } \Gamma \cup\{\phi\} Γ{ϕ} 是不可满足的; 如果 ϕ i ( i ⩽ n ) \phi_{i}(i \leqslant n) ϕi(in) 是矛盾式, 那么 Γ \Gamma Γ 是不可满足的。

简化真值表方法

类似于反证法。
比如用简化真值表来判断论说是否有效时,我们根据论说有效的定义(不存在前提为真而结论假的一行),那么我们就令前提都为真,而结论为假;再根据这种假设算出直接子公式的真值,进而在算出每个变元的取值(如果遇到了合取为假或者析取为真的情况是要分情况讨论)。如果一个变元既是真的有是假的,那么我们就证明了这个论说形式是有效的。
因为我们假设存在前提为真而结论假的一行,推出了矛盾,进而证明假设不成立,也就是不存在前提为真而结论假的一行,那么我们就证明了论说的有效性。

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值