python对接马来西亚股票完整代码


StockTV全球股票数据API对接实战:构建智能金融分析系统


一、StockTV API核心功能解析

StockTV作为覆盖200+国家证券市场的数据平台,其API提供三大核心模块的对接能力:

  1. 市场列表查询 - 获取指定国家的股票基础数据
  2. 个股详情检索 - 查询实时行情与技术指标
  3. 股票指数监控 - 跟踪大盘指数动态变化

数据字段价值解读(以马来西亚市场为例)

{
  "id": 41602,                    // 唯一标识符(用于关联K线数据)
  "symbol": "MDCH",               // 股票代码(全球标准格式)
  "last": 0.12,                   // 最新价(含自动汇率换算)
  "chgPct": 0,                    // 涨跌幅(机构策略制定关键指标)
  "technicalDay": "strong_sell",  // AI技术分析信号(量化模型输入)
  "fundamentalMarketCap": 202470000 // 基本面市值(价值投资参考)
}

二、开发环境搭建

1. 基础依赖安装

# 安装HTTP请求库与实时数据组件
pip install requests websocket-client
# 高性能缓存支持(可选)
pip install redis

2. API密钥配置

# config.py 安全存储密钥
API_KEY = "MY5975e1aeceed4245905b72dc9aee02fa"  # 测试环境密钥
BASE_URL = "https://api.stocktv.top/stock"

三、核心功能实现代码

1. 市场列表分页查询模块

import requests
from config import API_KEY

def fetch_stock_list(country_id=42, page=1, page_size=10):
    """获取指定国家股票列表(支持分页)"""
    params = {
        "key": API_KEY,
        "countryId": country_id,
        "page": page,
        "pageSize": page_size
    }
    response = requests.get(f"{BASE_URL}/stocks", params=params)
    response.raise_for_status()
    
    # 数据结构化处理
    stocks = response.json()['data']['records']
    return [{
        'symbol': s['symbol'],
        'name': s['name'],
        'price': s['last'],
        'change': f"{s['chgPct']}%",
        'volume': s['volume']
    } for s in stocks]

# 示例:获取马来西亚市场第一页股票
msia_stocks = fetch_stock_list()
print(f"马来西亚Top10股票:{msia_stocks}")

2. 个股实时行情查询

def get_stock_detail(pid):
    """根据股票PID获取深度数据"""
    params = {"key": API_KEY, "id": pid}
    response = requests.get(f"{BASE_URL}/queryStocks", params=params)
    data = response.json()['data'][0]
    
    # 构建技术面分析报告
    tech_analysis = {
        'day_trend': data['technicalDay'],
        'hour_trend': data['technicalHour'],
        'risk_level': "高风险" if data['performanceYtd'] < -10 else "中低风险"
    }
    
    return {
        'symbol': data['symbol'],
        'price': data['last'],
        '52_week_high': data['high'],
        'analyst_rating': tech_analysis
    }

# 示例:查询PID为7310的股票
stock_detail = get_stock_detail(7310)
print(f"个股深度数据:{stock_detail}")

3. 股票指数实时监控

def monitor_indices(country_id=42):
    """获取指定国家大盘指数"""
    params = {"key": API_KEY, "countryId": country_id}
    response = requests.get(f"{BASE_URL}/indices", params=params)
    indices = response.json()['data']
    
    return [{
        'index_name': idx['name'],
        'current': idx['last'],
        'change': idx['chg'],
        'status': "开市中" if idx['isOpen'] else "已闭市"
    } for idx in indices]

# 示例:监控马来西亚指数
market_indices = monitor_indices()
print(f"大盘指数:{market_indices}")

四、生产环境高级配置

1. 异常处理机制

from requests.exceptions import RequestException
import logging

# 配置日志记录
logging.basicConfig(filename='stock_api.log', level=logging.ERROR)

def safe_api_call(func):
    """API调用异常处理装饰器"""
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except RequestException as e:
            logging.error(f"API请求失败: {str(e)}")
            return {"error": "数据服务暂不可用"}
    return wrapper

# 使用装饰器增强稳定性
@safe_api_call
def get_stock_list_safe(country_id):
    return fetch_stock_list(country_id)

2. 性能优化方案

import redis
from datetime import timedelta

# Redis缓存连接
cache = redis.Redis(host='localhost', port=6379, db=0)

def cached_stock_data(country_id):
    """带缓存的市场数据查询"""
    cache_key = f"stock_list_{country_id}"
    cached_data = cache.get(cache_key)
    
    if not cached_data:
        fresh_data = fetch_stock_list(country_id)
        cache.setex(cache_key, timedelta(minutes=30), str(fresh_data))
        return fresh_data
    return eval(cached_data)

五、行业应用场景

1. 量化交易信号生成

def generate_trading_signal(stock_data):
    """基于技术指标生成交易信号"""
    if stock_data['technicalDay'] == 'strong_buy':
        return {"action": "买入", "confidence": 0.85}
    elif stock_data['technicalWeek'] == 'strong_sell':
        return {"action": "卖出", "confidence": 0.78}
    return {"action": "持有", "confidence": 0.65}

2. 财经资讯自动播报

import pandas as pd

def create_market_report():
    """生成市场日报自动化模板"""
    df = pd.DataFrame(fetch_stock_list())
    report = f"""
    ## {pd.Timestamp.now().date()} 马来西亚股市日报
    **涨幅前三**:  
    {df.nlargest(3, 'change').to_markdown()}
    
    **交易量异动**:  
    {df.nlargest(3, 'volume').to_markdown()}
    """
    return report

六、调试与错误排查指南

问题现象可能原因解决方案
返回403错误API密钥失效检查密钥有效期并联系StockTV更换
数据延迟超过5秒本地网络抖动启用WebSocket实时推送功能
分页数据重复未处理时区差异在请求头添加X-TimeZone: Asia/Kuala_Lumpur

版权声明:本文示例代码遵循 StockTV API 使用条款,商业应用需获取正式授权。
技术咨询联系StockTV开发者支持


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值