C++零基础学习记录
递归调用之 n阶汉诺塔问题
题目要求:A、B、C三柱,将A上N个从小叠到大的盘子借由B柱移到C,每次只能移动一个盘子,不能重复移动,小盘子必须叠在大盘子上面。
问:移动方案和移动次数?
逻辑分析:(自存,字丑、涂改见谅)
简要地说:
将n个盘子从A经B挪到C,
则先把(n-1)个盘子从A经C挪到B,
剩下1个从A挪到C
接下来把(n-1)个盘子从B经A挪到C
每一步除了盘子数、起点、中转有所变化,目标和移法都是相同的,可以递归调用同一个函数完成。若接着分析,则接下来是:
要将(n-1)个盘子从from经由buffer挪到to,
则先把(n-2)个盘子从from经由to挪到buffer,
剩下一个从from 挪到to,
接下来把(n-3)个从buffer经由from挪到to
这就是递归调用的基本思路。
递归流程:
Hanoi(n - 1, from, to, buffer);
Hanoi(1, from, buffer, to);
Hanoi(n - 1, buffer, from, to);
代码如下:
#include <iostream>
using namespace std;
int Hanoi(int n, char from, char buffer, char to);
int main() {
int n,num;
cout << "输入汉诺塔问题的阶数:";
cin >> n;
num=Hanoi( n, 'A', 'B', 'C');
cout << "移动总次数为:" << num;
return 0;
}
int num=0;//移动次数
int Hanoi(int n, char from, char buffer, char to) {
if (n == 1) { cout << from << "-->" << to << endl; num++;}
else
{
Hanoi(n - 1, from, to, buffer);
Hanoi(1, from, buffer, to);
Hanoi(n - 1, buffer, from, to);
}
return num;
}
执行结果:
n阶汉诺塔问题的移动次数规律为:2^n-1