Week3 作业C - 区间覆盖

问题描述

数轴上有 n (1<=n<=25000)个闭区间 [ai, bi],选择尽量少的区间覆盖一条指定线段 [1, t]( 1<=t<=1,000,000)。
覆盖整点,即(1,2)+(3,4)可以覆盖(1,4)。
不可能办到输出-1

输入

第一行:N和T
第二行至N+1行: 每一行一个闭区间。

输出

选择的区间的数目,不可能办到输出-1。

样例输入

3 10
1 7
3 6
610

样例输出

2

解题思路

本题目解法不难,难在极易超时,需要优化各种操作减少时间复杂度。

基本思路:
贪心算法,从[a,b]=[1,1]开始,每次找覆盖[a,b]的最大区间,将b更新为最大区间的右端点,没有覆盖的则次数+1,b=b+1(离散型区间),a=b+1,继续进行上述操作直到所有区间都判断过,或者某次得到的结果覆盖所给区间。

优化:

  • 输入时先将在[1,t]之外(b<1||a>t)的区间删除。
  • 将输入的数组按照a的升序排列,后面进行操作时只需从前往后遍历一遍即可。
  • .排序用sort函数,时间复杂度为n*log2n,效率高于一般排序算法。
  • 找完覆盖[a,b]的最大区间之后,b=b+1,a=b+1,如果下一个区间的a比b还大,(不可能再有能覆盖的区间了)则直接break,输出-1。
  • 使用cstdio,用scanf、printf输入输出。

完整代码

#include<cstdio>
#include<algorithm>
using namespace std;
struct section
{
	int a;
	int b;
	
};

int compare(section x,section y)
{
	return (x.a<=y.a);
}

int main()
{
	int n,t;
	scanf("%d %d",&n,&t);
	section s[25001];
	for(int i=0;i<n;i++)
	{	scanf("%d %d",&s[i].a,&s[i].b);
		if(s[i].b<1||s[i].a>t)
		{	i--;
			n--;}
			}
	section m;
	sort(s,s+n,compare);
	
	int count=1;
	int begin=1;//找包含begin的最大的
	int end=1;
	int i=0;
	bool change;
	while(i<n)
	{	change=false;
		while(s[i].a<=begin)
			{
			if(s[i].a<=begin&&s[i].b>=end) 
			{end=s[i].b+1;
			change=true;
			}i++;}
	if(end>t) 
	{printf("%d\n",count);return 0;}
			begin=end;
		if(i<n&&end<s[i].a)
			break;

		if(change==true)
			count++;

	}
	printf("-1\n");return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值