问题描述
数轴上有 n (1<=n<=25000)个闭区间 [ai, bi],选择尽量少的区间覆盖一条指定线段 [1, t]( 1<=t<=1,000,000)。
覆盖整点,即(1,2)+(3,4)可以覆盖(1,4)。
不可能办到输出-1
输入
第一行:N和T
第二行至N+1行: 每一行一个闭区间。
输出
选择的区间的数目,不可能办到输出-1。
样例输入
3 10
1 7
3 6
610
样例输出
2
解题思路
本题目解法不难,难在极易超时,需要优化各种操作减少时间复杂度。
基本思路:
贪心算法,从[a,b]=[1,1]开始,每次找覆盖[a,b]的最大区间,将b更新为最大区间的右端点,没有覆盖的则次数+1,b=b+1(离散型区间),a=b+1,继续进行上述操作直到所有区间都判断过,或者某次得到的结果覆盖所给区间。
优化:
- 输入时先将在[1,t]之外(b<1||a>t)的区间删除。
- 将输入的数组按照a的升序排列,后面进行操作时只需从前往后遍历一遍即可。
- .排序用sort函数,时间复杂度为n*log2n,效率高于一般排序算法。
- 找完覆盖[a,b]的最大区间之后,b=b+1,a=b+1,如果下一个区间的a比b还大,(不可能再有能覆盖的区间了)则直接break,输出-1。
- 使用cstdio,用scanf、printf输入输出。
完整代码
#include<cstdio>
#include<algorithm>
using namespace std;
struct section
{
int a;
int b;
};
int compare(section x,section y)
{
return (x.a<=y.a);
}
int main()
{
int n,t;
scanf("%d %d",&n,&t);
section s[25001];
for(int i=0;i<n;i++)
{ scanf("%d %d",&s[i].a,&s[i].b);
if(s[i].b<1||s[i].a>t)
{ i--;
n--;}
}
section m;
sort(s,s+n,compare);
int count=1;
int begin=1;//找包含begin的最大的
int end=1;
int i=0;
bool change;
while(i<n)
{ change=false;
while(s[i].a<=begin)
{
if(s[i].a<=begin&&s[i].b>=end)
{end=s[i].b+1;
change=true;
}i++;}
if(end>t)
{printf("%d\n",count);return 0;}
begin=end;
if(i<n&&end<s[i].a)
break;
if(change==true)
count++;
}
printf("-1\n");return 0;
}